Harmonized Landsat Sentinel Service
The Harmonized Landsat-Sentinel Service API produces high-resolution imagery and NDVI data for a desired area-of-interest. From NASA, the Harmonized Landsat-Sentinel-2 project is an initiative to produce a consistent, harmonized surface reflectance product from Landsat and Sentinel-2 data.
a) HLS Service
The Ag-Analytics® Harmonized Landsat-Sentinel Service (HLS) API provides the service in which a user can provide an area-of-interest (AOI) with additional customized options to retrieve the dynamics of their land at various times from the Landsat-8 and Sentinel-2 satellites. This service provides information on cloud cover, statistics, and Normalized Difference Vegetation Index in addition to MSI bands information.
The Harmonized Landsat-Sentinel (HLS) Project is a NASA initiative to produce a Virtual Constellation (VC) of surface reflectance (SR) data from the Operational Land Imager (OLI) and MultiSpectral Instrument (MSI) onboard the Landsat-8 and Sentinel-2 remote sensing satellites, respectively. The data from these satellites creates unprecedented opportunities for timely and accurate observation of Earth status and dynamics at moderate (<30 m) spatial resolution every 2-3 days.

Harmonized Landsat Sentinel Data in Ag-Analytics DataLayers.
General Flow of Service
When a user passes an area-of-interest (AOI) in the form of a shapefile, json, raster .tif, or geojson, the service finds the correct satellite imagery and clips each image to the AOI given. The service has the options to interpolate the result and to specify the imagery weeks that are returned.
General Algorithm Flow
- Determine the AOI polygon given.
**When the interpolation option is chosen, the AOI will be a larger area (determined by the interpolation parameters) of the given field boundary. Otherwise, the AOI will be a rectangle polygon around the given AOI.
- Identify the corresponding satellite imageries based on the AOI, acquisition date, interpolation parameters, and other options passed by users.
- The satellite imageries will then be clipped to the AOI. If the imageries from the same date overlay with each other on the AOI, the mean of the overlay area will be returned and merged with the area without overlay from each imagery.
- The imageries of the AOI will then be mosaiced to get weekly average imageries.
- (**) If the interpolation option is chosen, the selected interpolation method and parameters will be applied to each weekly imagery where has cloud cover.
(**when interpolation is chosen)
Interpolation Function
Due to cloud cover, the original satellite images may have many gaps and can not fully cover the area-of-interest (AOI). The interest to solve this problem arose in 2003, and there have been many papers and methods developed for this problem since then. After comparing and testing multiple methods and algorithms that have been used in dealing with the missing data on remote sensing satellite images, we adopted a customized "inpainting" method - which means filling gaps in an image by extrapolating the existing parts of the image in our API service.
To take the spatial and temporal correlation of the images into consideration, our customized inpainting algorithm "inpaints" a sequence of images with cloud covered for the given AOI. Each missing part (multiple pixels) at a certain location is inpainted by linear transformation of the intensity of pixels at the same location of other images where the data of these pixels are available.
Interpolation Algorithm Flow
- Identify the missing parts of the image and find the contours of each gap.
- Find the best candidates from similar sequences of images which have non-missing pixels to fill the largest part of a given gap.
- Define an outline – a thin curve around each gap, then used for obtaining the linear transformation of the pixel intensity between the two images for each of the best candidates. The candidate image with the best linear fit of the outline is chosen.
- To better-fit the area close to the outline, an intensity correction mask is then created by blurring the patch-intensity difference image.
- The mask is applied to the gap area on the best candidate and generates an inpainted patch.
- Finally, this inpainted patch is used to fill the gap in the image.
Request Parameters
Parameter | Data Type | Required? | Default | Options | Description |
---|---|---|---|---|---|
AOI | Geometry, file/text | Yes | -- | JSON, GEOJSON, Shapefile, Raster | See Fig. 2 for further explanation. |
Band | List | Yes | -- | See "Band" Parameter Options Table | Provide the list of HLS Spectral band names to retrieve for given AOI. See Figures 3-4. |
Startdate | Date | No | -- | mm/dd/yyyy | • Landsat – data starts from 2013 • Sentinel – data starts from 2015 |
Enddate | Date | No | -- | mm/dd/yyyy | In the absence of startdate or enddate, or both, the service retrieves the latest information available on the land. |
byweek | Int, boolean | No | 1 | 1, 0 | If set to 1, result raster will be the mosaic of all the tiles in a particular week for a given satellite |
satellite | text | No | Landsat | Landsat, Sentinel | If set to both Landsat, Sentinel then the result raster will be the mosaic of both satellites for the given dates |
showlatest | Int, boolean | No | 1 | -- | If startdate or enddate is not given, shows the latest available tile. |
filter | Int, boolean | No | 0 | 0, 1 | If set to 1, returns the response which is cloud-free after mosaic. |
qafilter | Int, boolean | No | 0 | 0, 1 | If set to 1, continues to filter tiles until the invalid pixels are < qacloudperc |
qacloudperc | float | No | 100 | 0-100 | This parameter comes to action with qafilter. If qafilter parameter is 1, then filters the tiles until the invalid pixels in those are < qacloudperc |
displaynormalvalues | float | No | 2000 | -- | This parameter is used to normalize the band values for display purposes. Used for bands like RGB, AGR, etc. |
legendtype | text | No | Relative | Relative, Absolute | Legend type of display ranges of resulting response. |
resolution | float | No | 0.0001 | -- | Cellsize in meters. |
flatten_data | Int, boolean | No | 0 | 0, 1 | Flatten data which has a list of Xcoord, Ycoord and Values for each band in the output. If 1, flatten_data is returned. |
statistics | Int, boolean | No | 1 | 0, 1 | Returns statistical features of the output .tif file. |
return_tif | int | No | 1 | 0, 1 | Returns the downloadable link to output raster. If 0, link will not be returned. |
projection | text | No | Projection of AOI Given | See Figure 5 | Enter the desired projection for the result raster. See Figure 5 for details. |
Band Information
API Variable | Band Definition | Description |
---|---|---|
Red | Red (0.64-0.67µm) | Reflects reds, such as tropical soils or rust-like soils. |
Green | Green (0.53-0.59µm) | Reflects greens, particularly leaf surfaces. |
Blue | Blue (0.45-0.51µm) | Reflects blues, particularly helpful for deep waters. |
NIR | Near Infrared (0.76-0.90µm) | Reflects healthy vegetation. |
NIR_Broad | Near Infrared (.842 µm central) | Good for mapping shorelines and biomass content, as well as at detecting and analyzing vegetation. |
Red_Edge_1 | Red Edge (.69 - .71µm) | Can gauge foliage chlorophyll, canopy area, and water content. Applications include growth studies, precision ag, and vegetation productivity modeling. |
Red_Edge_2 | Red Edge (0.73 – 0.75 µm) | Can gauge foliage chlorophyll, canopy area, and water content |
Red_edge_3 | Red Edge (0.77 – 0.79 µm) | Can gauge foliage chlorophyll, canopy area, and water content |
SWIR1 | Short-wave Infrared (1.57-1.65µm) | Sensitive to moisture content. Assists in distinguishing between dry and wet soils and vegetation. |
SWIR2 | Short-wave Infrared 2 (2.08-2.35µm) | Used in imaging soil types, geological features, and minerals. Sensitive to vegetation and soil moisture variations. |
Coastal Aerosol | Coastal Aerosol (0.43-0.45µm) | Reflects blues and violets. |
QA | Quality Assessment | Provides useful information for optimizing the value of pixels, identifying which pixels may be affected by surface conditions, clouds, or sensor conditions. |
Index Information
Index Name | API Variable | Formula | Description |
---|---|---|---|
Normalized Difference Vegetation Index (NDVI) |
NDVI |
NDVI = (NIR - Red) / (NIR + Red) |
NDVI is derived from readily available satellite imagery which is positively correlated with green vegetation cover |
Red-Green-Blue (RGB) |
RGB |
Composite of red, green, and blue bands. |
Color imagery, how the human eye would view something. |
Normalized Difference Water Index (NDWI) |
NDWI |
NDWI = (NIR - SWIR) / (NIR + SWIR) |
NDWI uses the NIR and SWIR bands to determine changes in water content |
Normalized Difference Buildup Index (NDBI) |
NDBI |
NDBI = (SWIR1 - NIR) / (SWIR1 + NIR) |
NDBI uses SWIR1 and NIR bands to determine urban areas |
Normalized Difference Tillage Index (NDTI) |
NDTI |
NDTI = (SWIR1 - SWIR2) / (SWIR1 + SWIR2) |
Similarly, NDTI is also derived from satellite imagery but calculated with different bands. It is positively correlated with crop residue cover |
Urban Index (UI) |
UI |
UI = (SWIR2 - NIR) / (SWIR2 + NIR) |
UI uses SWIR2 and NIR bands to determine urban density |
Green Chlorophyll Vegetation Index (GCVI) |
GCVI |
GCVI = (NIR/GREEN) − 1 |
Used to estimate the content of leaf chlorophyll in various species of plants |
MERIS-based Terrestrial Chlorophyll Index (MTCI) |
MTCI |
MTCI = (NIR_Broad - Red_Edge_1) / ( NIR_Broad + Red ) |
MTCI can be used to gauge chlorophyll content. |
Normalized Difference Red Edge (NDRE) |
NDRE |
NDRE = (NIR – Red_Edge_1) / (NIR + Red_Edge_1) |
NDRE uses NIR and red edge bands to gauge late season plant health. Calculated using Red_Edge_1 based on wavelength used for NDRE calculation in this paper (Carisse et al 2010). |
Band Insertion Into RGB
Features can be isolated to stand out by loading different combinations of bands into the red, green, and blue channels. Read more here.
Combo Name | API Variable | Formula (R-G-B) | Description |
---|---|---|---|
Traditional Color Infrared Image (CIR) | CIR | NIR - Red - Green | Combination of colors within the visible spectrum with addition of NIR light; useful for determining pigments in vegetation. |
Urban Environment (UE) | UE | SWIR2 - SWIR1 - Red | False Color useful for visualizing urban environments. |
Land and Water (LW) | LW | NIR - SWIR1 - Red | False Color good for picking out land from water. |
Atmospheric Penetration (AP) | AP | SWIR2 - NIR - Green | False color image with good atmospheric penetration. |
Agriculture (AGR) | AGR | SWIR1 - NIR - Blue | False color for visualizing agricultural activity. |
Forest Fire Burn Scars (FFBS) | FFBS | SWIR2 - NIR - Blue | False color often used for visualizing forest fire burn scars |
Bare Earth (BE) | BE | SWIR1 - Green - Blue | False color for distinguishing differences in bare earth. |
Vegetation and Water (VW) | VW | NIR - SWIR2 - Coastal Aerosol | False color for visualizing vegetation and water. |
Response Parameters
Parameter | Data Type | Description |
---|---|---|
download_url | URL | URL to download result raster (.tif) file |
flattendtext | -- | An array of Xcoords, Ycoords values from the .tif files. |
tiledate | Date (mm/dd/yyyy) | The tile dates from where the band values are retrieved. |
tilenames | -- | List of the Blob names from the Azure Storage Container. |
features | -- | An array of features from the database. |
features.attributes.CellSize | Resolution | Resolution of result Geotiff file in meters. |
features.attributes.CoordinateSystem | -- | Coordinate system of the result raster. |
features.attributes.Extent | -- | Extents of the result raster. |
features.attributes.Legend | List | Legend gives ranges of values for: Area: Area covered in % Count : # of pixels from the result raster in range CountAllPixels : Total # of pixels in result Max : Maximum value in range Min : Minimum value in range Mean : Mean value in range Color : Hex color used for value ranges |
features.attributes.Matrix | List | Rows and Columns. |
features.attributes.Max | Number | Maximum value from the result raster |
features.attributes.Min | Number | Minimum value from the result raster |
features.attributes.Mean | Number | Average value from the result raster |
features.attributes.Percentile5 | Number | 5th percentile value from result raster |
features.attributes.Percentile95 | Number | 95th percentile value from result raster |
features.attributes.pngb64 | URL | base64png image of the result raster with legend entries |
Figure 1.
Acronyms and Definitions
Acronym | Description |
---|---|
MSI | Multi-Spectral Instrument |
HLS | Harmonized Landsat and Sentinel-2 |
HDF | Hierarchical Data Format |
NIR | Near-Infrared |
GLS | Global Land Survey |
BRDF | Bidirectional Reflectance Distribution Function |
NBAR | Nadir BRDF-normalized Reflectance |
OLI | Operational Land Imager |
QA | Quality assessment |
SWIR | Short-wave Infrared |
SDS | Scientific Data Sets |
SR | Surface reflectance |
SZA | Sun Zenith angle |
NDVI | Normalized Difference Vegetation Index |
UTM | Universal Transverse Mercator |
WRS | Worldwide Reference System |
Figure 2.
AOI Structure Examples
JSON Example
{"geometryType":"esriGeometryPolygon","features":[{"geometry":{"rings":[[[-92.678953,41.741707],[-
92.678966,41.740563],[-92.678972,41.739963],[-92.67896,41.738874],[-92.686062,41.738873],[-92.688546,41.738868],[-92.688544,41.739223],[-92.688555,41.743961],[-92.688124,41.743969],[-92.686658,41.744045],[-92.685481,41.74411],[-92.68513,41.744086],[-92.684627,41.743993],[-92.684352,41.743833],[-92.683972,41.743603],[-92.683789,41.743476],[-92.683333,41.742983],[-92.682923,41.742627],[-92.682497,41.742283],[-92.68213,41.742294],[-92.681444,41.742131],[-92.680101,41.741842],[-92.679444,41.741817],[-92.679094,41.741713],[-92.678953,41.741707]]],"spatialReference":{"wkid":4326}}}]}
GEOJSON Example
{"type":"Feature","geometry":{"type":"Polygon","coordinates":[[[-93.998809,41.993243],[-93.99873,41.988358],[94.001444,41.98838],[-94.00144,41.989089],[-94.003556,41.989116],[-94.003571,41.991767],[94.002054,41.991735],[-94.002086,41.993278],[-93.998809,41.993243]]]},"properties":{"OBJECTID":2038888,"CALCACRES":44.63000107,"CALCACRES2":null} ,"id":2038888}
Shapefile Example
A Zip folder with following files [example.shp, example.prj, example.dbf, example.shx]
Raster Example
A GeoTiff file of ‘.tif’ extension
Figure 3.
Bands Information and Request Syntax
Figure 3.
HLS spectral bands nomenclature
Band Name | OLI Band Number | MSI Band Number | HLS Band Code Name L30 | HLS Band Code Name S30 | L30 Subdataset Number | S30 Subdataset Number | Wavelength (micrometers) |
---|---|---|---|---|---|---|---|
Coastal Aerosol | 1 | 1 | band01 | B01 | 01 | 01 | 0.43 – 0.45* |
Blue | 2 | 2 | band02 | B02 | 02 | 02 | 0.45 – 0.51* |
Green | 3 | 3 | band03 | B03 | 03 | 03 | 0.53 – 0.59* |
Red | 4 | 4 | band04 | B04 | 04 | 04 | 0.64 – 0.67* |
Red-Edge 1 | -- | 5 | -- | B05 | -- | 05 | 0.69 – 0.71** |
Red-Edge 2 | -- | 6 | -- | B06 | -- | 06 | 0.73 – 0.75** |
Red-Edge 3 | -- | 7 | -- | B07 | -- | 07 | 0.77 – 0.79** |
NIR Broad | -- | 8 | -- | B08 | -- | 08 | 0.78 –0.88** |
NIR Narrow | 5 | 8A | band05 | B8A | 05 | 09 | 0.85 – 0.88* |
SWIR 1 | 6 | 11 | band06 | B11 | 06 | 12 | 1.57 – 1.65* |
SWIR 2 | 7 | 12 | band07 | B12 | 07 | 13 | 2.11 – 2.29* |
Water vapor | -- | 9 | -- | B09 | -- | 10 | 0.93 – 0.95** |
Cirrus | 9 | 10 | band09 | B10 | 08 | 11 | 1.36 – 1.38* |
TIRS1 (Thermal Infrared 1) | 10 | -- | band10 | -- | 09 | -- | 10.60 – 11.19* |
TIRS2 (Thermal Infrared 2) | 11 | -- | band11 | -- | 10 | -- | 11.50 – 12.51* |
QA | -- | -- | -- | -- | 11 | 14 | -- |
Figure 4
Projection Syntax and Example
Projection Syntax
Projection: Projection of a new resampled raster. It may take the following forms:
- Well Known Text definition
- "EPSG:n"
- "EPSGA:n"
- "AUTO:proj_id,unit_id,lon0,lat0" - WMS auto projections
- "urn:ogc:def:crs:EPSG::n" - ogc urns
-
PROJ.4 definitions
- 6.__well known name, such as NAD27, NAD83, WGS84 or WGS72
- 7.__"IGNF:xxxx", "ESRI:xxxx", etc. definitions from the PROJ database
Projection Example: "urn:ogc:def:crs:EPSG::n"
Figure 5
Request Examples – form-data and urlencoded
form-data
application/json
{
Band: "['NDVI']"
Enddate: "3/8/2019"
Startdate: "3/2/2019"
aoi: "{"type":"Feature","geometry":{"type":"Polygon","coordinates":[[[-93.511545,42.071053],[93.511565,42.074566],[-93.50667,42.074588],[-93.501908,42.074559],[-93.501936,42.071045],[-
93.511545,42.071053]]]},"properties":{"OBJECTID":3350330,"CALCACRES":77.09999847,"CALCACRES2":null},"id":3350330}"
legendtype: "Relative"
satellite: "Landsat"
}
application/x-www-form-urlencoded
aoi=%7B%22type%22%3A%22Feature%22%2C%22geometry%22%3A%7B%22type%22%3A%22Polygon%22%2C%22coordinates%22%3A%5B%5B%5B-101.02684%2C38.598114%5D%2C%5B-101.026842%2C38.597962%5D%2C%5B-101.026956%2C38.59093%5D%2C%5B-101.028768%2C38.590943%5D%2C%5B-101.029234%2C38.590946%5D%2C%5B-101.035523%2C38.590991%5D%2C%5B-101.035526%2C38.590991%5D%2C%5B-101.035564%2C38.590991%5D%2C%5B-101.035576%2C38.590991%5D%2C%5B-101.035595%2C38.590991%5D%2C%5B-101.035956%2C38.590994%5D%2C%5B-101.035974%2C38.591099%5D%2C%5B-101.035957%2C38.594349%5D%2C%5B-101.036017%2C38.598193%5D%2C%5B-101.035203%2C38.598193%5D%2C%5B-101.033665%2C38.598182%5D%2C%5B-101.031726%2C38.598158%5D%2C%5B-101.02684%2C38.598114%5D%5D%5D%7D%2C%22properties%22%3A%7B%22OBJECTID%22%3A8091992%2C%22CALCACRES%22%3A156.1000061%2C%22CALCACRES2%22%3Anull%7D%2C%22id%22%3A8091992%7D&satellite=Landsat%2CSentinel&Band=%5B'NDVI'%5D&filter=1&interpolate=1&showlatest=1&resolution=0.0001&statistics=1&Startdate=9%2F26%2F2019&Enddate=10%2F2%2F2019&legendtype=Relative
Call API
Request
Request URL
Request headers
-
(optional)string
Request body
aoi=%7B%22type%22%3A%22Feature%22%2C%22geometry%22%3A%7B%22type%22%3A%22Polygon%22%2C%22coordinates%22%3A%5B%5B%5B-101.02684%2C38.598114%5D%2C%5B-101.026842%2C38.597962%5D%2C%5B-101.026956%2C38.59093%5D%2C%5B-101.028768%2C38.590943%5D%2C%5B-101.029234%2C38.590946%5D%2C%5B-101.035523%2C38.590991%5D%2C%5B-101.035526%2C38.590991%5D%2C%5B-101.035564%2C38.590991%5D%2C%5B-101.035576%2C38.590991%5D%2C%5B-101.035595%2C38.590991%5D%2C%5B-101.035956%2C38.590994%5D%2C%5B-101.035974%2C38.591099%5D%2C%5B-101.035957%2C38.594349%5D%2C%5B-101.036017%2C38.598193%5D%2C%5B-101.035203%2C38.598193%5D%2C%5B-101.033665%2C38.598182%5D%2C%5B-101.031726%2C38.598158%5D%2C%5B-101.02684%2C38.598114%5D%5D%5D%7D%2C%22properties%22%3A%7B%22OBJECTID%22%3A8091992%2C%22CALCACRES%22%3A156.1000061%2C%22CALCACRES2%22%3Anull%7D%2C%22id%22%3A8091992%7D&satellite=Landsat%2CSentinel&Band=%5B'NDVI'%5D&filter=1&interpolate=1&showlatest=1&resolution=0.0001&statistics=1&Startdate=9%2F26%2F2019&Enddate=10%2F2%2F2019&legendtype=Relative
Responses
200 OK
Representations
[
{
"band": "NIR",
"download_url": "downloads/result_raster_20190719_163615_1374.tif",
"features": [
{
"attributes": {
"CellSize": [
1E-05,
-1E-05
],
"CoordinateSystem": "GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 84\",6378137,298.257223563,AUTHORITY[\"EPSG\",\"7030\"]],AUTHORITY[\"EPSG\",\"6326\"]],PRIMEM[\"Greenwich\",0,AUTHORITY[\"EPSG\",\"8901\"]],UNIT[\"degree\",0.0174532925199433,AUTHORITY[\"EPSG\",\"9122\"]],AUTHORITY[\"EPSG\",\"4326\"]]",
"Extent": "-87.91751032820102, 40.14826234941817, -87.91357032820102, 40.15643234941817",
"Legend": [
{
"Area": "40.4 %",
"Count": 129095,
"CountAllPixels": 319546,
"Max": 2504.07814534505,
"Mean": 2238.03986612956,
"Min": 1972.00158691406,
"color": "#ff66ff"
},
{
"Area": "12.58 %",
"Count": 40196,
"CountAllPixels": 319546,
"Max": 3036.15470377604,
"Mean": 2770.11642456055,
"Min": 2504.07814534505,
"color": "#ff00ff"
},
{
"Area": "12.41 %",
"Count": 39652,
"CountAllPixels": 319546,
"Max": 3568.23126220703,
"Mean": 3302.19298299154,
"Min": 3036.15470377604,
"color": "#6666ff"
},
{
"Area": "11.61 %",
"Count": 37106,
"CountAllPixels": 319546,
"Max": 4100.30782063802,
"Mean": 3834.26954142253,
"Min": 3568.23126220703,
"color": "#0000ff"
},
{
"Area": "15.11 %",
"Count": 48285,
"CountAllPixels": 319546,
"Max": 4632.38437906901,
"Mean": 4366.34609985352,
"Min": 4100.30782063802,
"color": "#ff6666"
},
{
"Area": "7.89 %",
"Count": 25212,
"CountAllPixels": 319546,
"Max": 5164.4609375,
"Mean": 4898.42265828451,
"Min": 4632.38437906901,
"color": "#ff0000"
}
],
"Matrix": [
817,
394
],
"Max": 5164.4609375,
"Mean": 3128.27420852874,
"Min": 1972.00158691406,
"Percentile5": 2036.31546020508,
"Percentile95": 4768.91760253906,
"pngb64": "data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAYoAAAMxCAYAAAD17PSPAAAnLElEQVR4nO3dW5IbOZJAUahMW5gtUmsSt1iLyPlQsUWlSCQZgYc7cI7Z/ExXVzPJAG54BB/fPi4f/xYAcrr2/5/4p///BACZCQUAVUIBQJVQAFAlFABUCQVAZpf+/xNCAUCVUABQJRQAVAkFAFVCAUCVUABQJRQAVAkFQHadP0shFABUCQUAVUIBQJVQAFAlFABUCQXACjq+80koAKgSCgCqhAKAKqEAWEWn+xRCAUCVUABQJRQAVAkFwEo63KcQCgCqhAKAKqEAWE3jy09CAUCVUABQJRQAK2p4+UkoAKgSCgCqhAJgVY0uPwkFAFVCAUCVUACsrMHlJ6EAoEooAKgSCoDVnbz8JBQAVAkFAFVCAbCDE5efhAKAKqEAoEooAKgSCoBdHLxPIRQAVAkFAFVCAUCVUADs5MB9CqEAoEooAKgSCgCqhAKAKqEAoEooAHbz5jufhAKAKqEAoEooAKgSCgCqhAKAKqEAoEooAKgSCgCqhAKAKqEAoEooAKgSCgCqhAKAKqEAoEooAKgSCgCqhAKAKqEA2NEbv3InFABUCQUAVUIBQJVQAFAlFABUCQXArl5855NQAFAlFABUCQXAzl64/CQUAFQJBQBVQgGwuy8uPwkFAFVCAUB1qhAKAKqEAoBfnkwVQgHAbw9iIRQA/OlTLIQCgCqhAOBvd1OFUADw2H+xEAoAnrsIBQBfEAoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKBKKACoEgoAqoQCgCqhAKDq++wHANNcv/jPL0MeBYQnFKzpqwj0/neIDAsRCvJrEYXWWj8m4WEioSCniHHoqfb3igidCQU57BaGdzx6bsSDhoSCuMThOPGgIaEgFnHo5/NzKxy8SCiYTxzmMHXwIqFgDnGI6dnrIiBbEwrGEYe8BGRrQkFf4rA2b9vdglDQnjhQipvnCxEK2hAHviIcaQkFx4kDZ9wfP6IRmlDwOmGgl9uxJRghCQV14sBIghGSUPAnYSCCaxGLQIRiZ6JAZKaLMIRiB4JAZqaL6YRiJYLAqsRiKqHIRgyAwYQiMlGA30wV0whFFKIAXxOLKYRiJnEAEhCK0cQBzjFVDCcUowgEkNQ/sx/A8q5FJKA1a2ooE0UvDmRgESaKHkQC+rPOhjFRtOTALT8O3mT86bmDsISilY02uqMxOPLvFBCY79vH5ePf2Q8itQ02sh5hOEI0eCjI8bkyE8VRC29aUcLw2f3jEg0YRyjeteAGFTUMNbfHLBjQX85LT69uDi03wIU2pIxh+IpgbG7BYzqSPKFouRG8clAttPGsGIZnBGNTGx3jM8QPhYX/tp3C8IxgbMYx31XsUFjsbxGIP42ORe35F64BHP/dxAyFRfUycfha6026xXMuHB1YC93EC4UF9BKBeN+Zzbnn8y0ajVgT3cQKhQVTJQ7t1DbnWc+zYDRgjXQRJxQWyVMCsQ+xaMB6aS5GKCyOp0RiT4JxknXT1PxQWBAPCQRi0cCK62jCcTE3FBbCXwSCzwSjoejrK+hrPS8UQZ+QmUSCZ8QioCPrNenrOCcUSZ+sXrIE4vri63ZJ8vdkIxbMMj4UDvY/RI3Eq1F4hXC0JRiMNjYUDvA/RIpEyzA8IxjtiAUj+T2KCaIEYkQcHv3vCQbkMm6icAZUSpkfidFxqBGMc0wVjDJmonBAl1LmRSJSHO5dr2IBGfSfKIJuUqPNiETUQHwmFseZKhihbygcxALxIrF4n0gwyj+zH8DKRkfies0ZiVLyPm7YQb9QbL7wR0YicyDurfA3wIr63MzefMGPioSNdV8uOzFS+4li8wNYJM5Z9e+CzNrezN58kYtEO25uP2eaoJdne5hPZjcw+n4E+xIJjjqzT7ULxaYHsCkCiKTHntTm0tOGm5gpoj+Xn/5kmuCZ3vvR+Yli4sH71ZPTa2GJBKOJBJ+N3IfOhWLCwfvOk/P5nz272GZ8gA7gZtb3xZ279DRwI+v1BNXiMfObXkXiF5efTBPM/9bp4xPFApHo/e8+SiSAUuLsT8dCsUgkIDrTxJ6i7Xvvh0IkujJNcCMS+4m6570XCpHoSiQghlf3n1Yxj77fvR4KkegqWiQ+Lj/++v99u/6c8Ej2ZJoY78i+8+i/88prl22Pey0UDtquokTiURwe/eeCwUpab9rZIvCKr98eO3gTW/FJrokQia8C8cyoYOz4FlkTRX+77TVn1L9mXCSW9nH5cTgSt/8+7YlEf/aa112vtUtPDtbuZk0TNnh2JhJ/+2ovehyK4F/NsYJVIvFx+eGeBWnsts888+7+4/coJlglEvf/XrFow2WnfnaOxNk95+9QmCaW5HIT7KfVSemfoXA2092MaUIk2N1uJ6Ot95nf73qaFImdXsCVIyFGRLXbHtNjn/k1UZgklmTzzsX9ifZ2iUTvk9B/Iv9C3UpGTxMiAXsYsbd419MAIgHjrX4iOnJfqX8yGyAhkWhLKDozTQAtzXhTzLRQrF58YI6V95ZZH9Z1j6Ij0wSMtWokZn/LtEtPwBJEoh+hWIRpgp2JRF9C0UmUF5gcfNiOzyLtIe5RAKmtNk1ECsSNUBDe9brnz6FSNyoQnzfuXsdixEDcTAnFamcAjPv9bCil7x7y1Yb97D8/GpDIgSjl1/1PEwWQSo9ItNisXwlI9CjcfH5zjFB0kOVggGxaR2LEWs2yH9TeOSkUnOayE71FnSJW8Mpb66eE4ufVfQrgawLRzzufvTJRLOLb9acP3bGMXieSInHsw7lCwSkuO7Xx4+JDd6UIRE9nTiSFAphOIPo6e7VBKBYy+vKTaYIzZn4WYhet9gOhAIYSiP5anzAKxWLc1CYqgRijx/oXig4ul/UPXJed2lv1hrZAjNHzBPGfMunzDCsuiChW3MRtCPn8uPS9Se2Y+K33VYRfE8WllOJJX4pLUMziHUzjjFrjv3+4yCell7PiZLG67N9Y0OuT1CLxp4/Lj6Engu5R8LZZAfK7FHFl/LK+bGZeIfjzp1AHL8KV71NE2dBMFfTWMhKmhz/dJofZl5H/nijcr1iO+xW5ZHn3U+tA7C7yGn186UkslrNKLHa5/BQ9Fq0iMTIQKxz/szy/RzEoFr5yfJxVYsFcLdZr70A4ztv69nH5+Lf6TwyIxcqhiDhSn11EEe577DBVlBJrqogaCFHo758v/4kBCzLSYtjB2Y3ewhwnyklUtEhEucm7i9feHuuexXKyX4ba5V5FBGcj0SIQmY/VFXw9UXDKqpuZhTvOrKmixVdwnI2EqSGG10PR+WB1+Yl3Rbz/08voWMy+1CQQsbw3UYgFdyzksUbEotUX+R2NhEDE9PW7nh7puKFHuXnXWsSz31YLcva7oFa9vFfT46RqdiCI69g9io4L01TBuyJGuLeWJ1QRpghiO/6lgN4JxX8+Lj+mTxU7vgvqfnN/9wQrwpf4CUQexy493esUixUvQUU68+2xSGfHYrdQPPMoGtF+ZU4kcgkbilLWi8XqoShl3Vg8eu2ESSR2cT4UpYjFi6KEoudCnR2KUtpt4K++XrsGQyT20SYUpaSNxW1MHxWkCLHovVgjxKKU4xv40ddop2CIxF7ahaKU8LF454bfqr/7O2qxZoxFi9dmh1iIxH7ShOLm3Q387NttI7w7pJXRizVKLEp5voH3eD1WjkWYSNQeyMovwCRtQ1HKsLfMPtvAo34Q6d6sWOwcitFW3KumR+LdB7DiizBJ+1CUsuTnK7L/7OOs0V8s8jv7nU1TH0Ap67wQE/n22Bdl/sT4zOvDO1+bnn0/qoX0kWj179hcn1AsGvBWsRh5ghNho47wGGbJvEctEQma6DdRiAWUUvLtd9frgpHI9iIE49LTAVliEelMPtJjmSHDPnU2EKUEjUTvf+8G+oZi0amCY8Ri9iN4LszPlUZ+kjZmojjo7FTR+z7F7ptyVNH2wRZTRCmOt9X1D4Wpgjs2lHabc5TH0Ow1nf2k8NSYiWLRWES9VxF9M47++EaZsS+2jpTXcg8uPZ10JhY+B8SIWNzi0Pp/a+qnrhnq+C/cvcsv4g2R5Qwvwq/iRXHbI1ueOPTed7McZ7QxLhRA1dlgjDgpF4g99fmup5pFp4qj3wUV+nLAAKaKrz0Kx1LfFzbqj3Gt9zATBQQ3+/J9tpMP2ht/M3vRqB+9qd3yJCfjgs74mHeyzOtjmjjFu56Ah0SCmzmhWPR1i/q5iuiW2ZAW8XH5sc5rIhJNuEcB/I9A8Mi8S09ex/9xTBPBEpG4XCyoDtyjaGzW5afsizz7489siUtNAtHV3EtPPq0NU6UNhCgMNf8ehVjAFGEicdv0n31gRBSmmx8K+I/vfxonTCTuCUJYMe5RLHZ8HLlPYY0wSshIEFqMUABDiARHxAmFM2qAkOKEYjE+pU00pgmOinUzu9c7oL6aVmzqYbih3YdIcEa8iaLVJajL3f+9+s9O5oY2PYgEZ8ULRSnnNu0zm76NmsWIBC3EuvR0753LUC03+IaXv35ej//yHSzh84fojM0pxQ1FKb8D8Gjj7nm8+bQ4C5g6TTz7lPX1KhYJxQ7FzYzjalIsLpf5P31JftMi8crBKxbpxLxHEUWiY9k7hZjunTMcZ0OpCEVnPk/BaFOmiSMbv1ikIRRfSTRVQDpikYJQBOTyLUelmSZa/vfpTiheYeOGvsQiNKEYYNR9Cje095b+w3ViEZZQAMe13tzFIiSheNXgy0/uU/CO9NPEvetVMILJ8YG7Bfg6D3hTtg/mLfyb3yaKxWS/T5H98c8wdZrovQlmmS5qjzHL31AhFO/If2IAOUXdbN95XBEf/4uEIrAFJlY6W+rexCsiBSPK4xhAKAbyNlloJFIw3pHxMRehgLTCTBMzR99bMEZvwEk3/KOE4l3eJgsxbbZ5jyQUi3L5aW1hpombKGc0I6aLDb/bSigG87Xjz4kbzSTcjCMTioXZeNcUbprYTZTpaSChSGDD45KMoh2opopmhAISMU0EcSaK0YL6AqE4ItHr7PITcJZQTHDkhnbCkxAaM00Es9GiFIoNmCoYZqPNs5Ty/t+b9PkRCkjANBHYq5t/0kiUIhTbMFXkJRIJXC71ECSORCl+uGiaIz9kdLl4xx+8bMbmnDwIz5gojkp4PESfKpw5/y3dc+JMZklCsZnoseC3dJFgWUIxkbfJ8oxInGShNCUUG4o8VdggPQfEIxQJtThZEgvgVUJxRoMNe+bXjkeOxa5SRzLKjWyXnZoTCkJKvWEetOPfTA5CkVSrk6bIU8XH5cc2m+cuf2d3pokuhOKs5JefSokdi1LWD8YSf1uUy050IRSJtTx5ih6LUhbZUD9Z8W9iPULB/2SJxSqb6yp/RxguO3UjFEEcvfzUem1kiEUp+YOR+bH/xWWn5QlFC4udyGSJRSk5g5Ht8aZgmuhKKAKJMlWUkisWpeTYfDNGDUoRCioyxiLiRhz1ccGrhKKVyZOvyfu3KJvyFoGIcH/Cwd+dHy4K5sgPGvX07foz5Wb3cfkxfCLK+DzBK4RiIb1+AS9zLErpdwkt43MCR3z7uHz8O/tBLKXRRn10quh5JSDzxtgiFpn//m5mX3py2WkIE8Vi/K72Y/eb/KvREIYvONC2IRRBRbtXUUreS1CfrfA3wEje9dRasM0d4CyhWFDPy7bZPlvBwtyfGEYoApv99eMApQhFHwFOdEwVQCtCEZypAphNKHpZfKqAqRzcQwlFAhGnCpefYB9C0VOAkx4nXsBZQpGEqQL+4+xnOKHoLcAxbV0BZwhFIhGnCjbmDGQbQjFCgPXUa027/MRQ4jSFUIzS6Pg2VRCKjXsLQrERUwWpidI0QjGSqYIV2cCXJxSjTV5T1jQpOXCnEoqkok0VLj9tzka+NKGYwZpiRb1iIULTCcWG3NSmm9YHl0iEIBSzNDj+o11+glKKzX1BQrEpa5muWhxgDtIwhGKmBacKl5/4nzMbvUiEIhSzWQ+s7HJ5f9MXiXCEYmPWI8O8erA5KEP69nH5+Hf2g6CUcvIS0o+D6+va6dLVx+VHn38xa/h84AlEaN9nPwDmulz6xQKeEoZUXHoCoEooojh5guXdT0AvQgFAlVBEMumyrcvFQI2b2Qv5eT3+7qcevl1/evfTGz5frvPcEYVQwASv3MN59M+IBzP4HEVEJ25Mn5kofKair9Y3+D2vjGKiYCujz9J7vvvr9u8WDHozUUS02Ke0S5m3mR3dqM883llvDRYMehGKqFx+OqXHZv3sb4j2mRHBoDWXnhhi1DugRlzqic4lKVozUUS14OWnmx4bWJZNfAbB4CyhiGyxy0/3Wmxe4vAeweAol56Y4szlEYE4xiUpjjJRRDbp8lMpc756/NEGJgr9CAavMlEQhiiM5StWeJUvBYws0Pc2saZv158CzZeEYmFnfqPCN8ruRTCoEQrgfwSDR4SCp0wV+xIL7glFdIv9RCp5mC64EQqqTBUIBkKxAVMFLYjFvoSCL5kquDFd7EkoMmiwUZ+dKsSCe2KxF6EADjFd7EMoeJmpgkfEYn1CsZEWN7XFgkdMF2sTiixs0CQgFmsSis2YKuhNLNYjFBsSC3pzKWotfo+Cwy6XOT9wtIOWIZ75GvnNizX4hbtsGi76M7+AdyMU542ezqL8eiF5CEU2wUJRilgcEeXS3cjXTizyEopsGi9ssRgjShieGfX6iUVOQpFR0FiUIhj3osfhmRGvoWDkIhQZBQ5FKXFicXSjPvr4s4bhmd6vo1jkIRRZBY9FKeODsdpGHUXP11EschCKrDos3oyxEIdxBGNfQpFVp0XbIxY3LTYaYZivVzDEIi6hyCzJVPHMVxuOKMQlFnsRiuySx4LcBGMPvuuJv/iNbV7Va+rzPVGxmChWkPB+BevpMV2YLGIwUfCUyYJ39JgufAttDEKxgo5n/mLBO1yKWpNLTyvpuKm7DBXH2XiPei3d6F6HUKxGLJbUc7KL/tmZZwRjHKFYTedLRWIxzujLfr1eW7HITyhWJBZpRbgnlPGrXASjL6FYlVikEiEQn2X8VmHB6EMoVjZgYQrGORED8VnG3ysRjLaEYnViEVKGQHyW9dcQI0Sj5dt7Z/w9QrEDsQgjYyDuZY3FZ0c328if5+gZEKHYxaCFKRiPZQ/EvVVisYNW8RCKnQxcmILxy0qB+KzFaywWcdSiIhQ7mbAodw3GyoG4JxZ7EIrdTFyUo6Lx1Sbd63HsEofPxGJ9QrGjIIvyyAbTezN+5zHtGoZHxGJtQrEri5LGxGJdvmZ8V5veO6CfFhOW30mPSSh2ZlHSmFisSSh2Z1ES0OUiGJG4R8Evrg3n98rGmvCDl+5bzCcU/GZB5nN0Q072tS5iMZdQ8CcLMr6Wl2QCvd34FYIxh1DwN4sxpp7X7JP91KpgjOVmNn9zEzGe3q9Jstfcze6xTBQ856xtvhmbYYfXfcTXt5gy+hEK6iy+OWafLSeNxT3haEcoeI1FN87sSNwsEItXCMrXhILXWVB9BdxEW7/mEUPxrh3DIhS8Z8NFMkTUDXSTqeKs1eMhFLxv8UUxVIZNUyzetlo4hIJjFlsIU2TaLMXilOzhEAqOS37wT5N1g3S/opls4RAKzkt20E+VeXM0VXSRIRpCQRsJDvapVtkQxaK7iOEQCtoKeJBPt9JG2On1FYu62fEQCtoTi19W3fzEIpQREREK+tk5GCtvesm+aZbzhIL+dgrGLhudWGzF14zT3+Xu/1a2+t83yM+dTiySMFEw16ubQutNuOVmtGsgkv2cKscJBZRyfNPbeSMbeOYvGHMJBTzy1SZo45p27+mraLS4dCVMfxIK4LhN7ifsHg43swG+8PO69012oQB40a6xEAqAN+w4XQgFcNzG1+53ioVQAFAlFAAH7TJVfJ/9ACA8n6mg4ud1/bfPmijgmWt57XMCr/5zq1p8k8QH7uBvLTb93TbPnUP5n5WnCpee4KblZnf7dy28ebAPl56g56Wj3S9LbWTlG9tCwb5GbuILbyKlFJPT4lx6Yi8zN2yXo0hKKNhDpDN6wSAZoaCvGb8kFykKNdciFqQgFLTTe4POEoB3mC5IQCg4Z8XNewbTBYEJBe8Thz7EgqCEgteIwxguRRGQUPCcOMxjuiAQoeBP4hCHWBCEUOxOGGITizR8KSBrEYdcxILJhGIHwpCfWDCRUKxKHBhp8+Nt5ctOpQjFWjZfrMszVTCJUGQnDnsRCyYQiozEYW/RYrH58bj6ZadShCKXzRckMIdfuMvAz2nymeMhhB2miVKEIj4bAs9EODYiPAa6c+kpKgsQQttlmijFRBGTSPAqxwoDmCgiseinOHtm+HP26zbrXVCz/+6JdpomShGKODZYdK0X11cb9KjFfP+/Mz0adLdbJEop5dvH5ePf2Q9iewttLjsuokemBGPkc7/QMfuuHY9xoZgt+YLbcdG8aulYJD9uj9r1eHfpaZbEC23XxfKu2/O03OWo1f6eF+183AvFDAkX2s6L5Kwfl4Gx6H1jO+Gxy3kuPY2WaKGJQ1tDJ4ter12i47el3deCiWKkBIts9wXR09DJoofMj/0Ea0Ioxgm+yCyGxbS+BBX8+O3FuvjFpacRAi8yC2G8dJegAh2/teO19fNqbfwmFL0FWmT3LIK50sQiyPF75Hg98xxbH38Sip6CLLJ7FkAc4WMR4Phtdby++lxbH4+5R7EJC2Bz796zWCgSrf9dOzJR9BJgoZVigUQX7tPbjlseMFH0YLERWZDj8xnHbTwmitaCLMKIi+06+Lm5BHwOHkn92YrGIh63mCjaCrDgoyy00VE4+xiyRGVlUY5d/maiaCXAxjhzoUUIQ0ujw2GqEIrITBQtBFjkMxbZanG4d/+3mTb6E4nYTBRnBNkoRy6yleNQMyIWu04VIhGfieKoIIt61CLbNRA3t7/fdMGO/pn9AFIKsmmOiMT1KhL3PBdtmSZyEIqkei8wgXiu1/Ni0yQql57eFWDz7LmhiAOjCGMeJop3BNhERSIGz9U5IpGLULwqwMbQa3G5zHSM54xdCMUrFt4QbHax7HCmvcPfuBqh+EqQjbT14jJFtOE5ZAduZj8TaAPoEQmYwTSRk4nikUAbqUjsx2ZKNELxWaCNtOWG4VJTP57X1whgXkJxL9CCbx0JmEkkchOKm0CbqUhgYyUSoShFJDjNc/2c6OUnFIGIBPdW2GBX+BsQijDThEgAUe0diiAbqkjwTOYz8syPnT/tG4ogG6pIrMPXj/+W8THz3J6hCLKhigQrEon17BeKIBuqSPCOLJtvlsfJe/YKRZANVSTW1fP1iL4JR398HLdXKAIQCc6IuBn/uMR8XLSzTygCbKoWEy1E2pijPA762iMUASLRmmkirlGvzcxNOlKs6G/9UATZUF1yoocZG7ZA7Ofbx+Xj39kPopsgG6pI7OkyYUP9ufHNdPrxC3ediQQj3Y63lsEQCNadKAJsqn6djhlTxWfvRkMY+GzNiSLAhrpKJD4uP57+Z9+uPwc+Eo6y8XPWmhPF5FCsEIlaID4TjLoIUwWcsV4oROKUdwLxmWA8JxZkttbbYwNccsrq4/LjVCRu/w5gPWtNFKaJQ3ps8K2ni68eY4ZpxlRBVuuEQiTe1nsCaLF5v/sYowdDLMhojVAsFolS+odi9GWidzbwFo8tcjDEgmyE4iSROOa2kWeYanoQCzLJH4rFpokdIjFDxGCIBVnkDoVIvGXXSNyLFgyxIIO8oRCJt4jEb9FiUYpgENv3pxuuA/cpX4mQ2y2akYJxvYoFcX37KC9MFNEOYDev32KaqIsUjFIEg3heC8W92QexSLxFJF4nGPDY+6G4mXEQi8RbROIYwYA/HQ9FKeNisdiN61LW+OT16gQDfjkXipueB3CAL/rLGAqRaCdaMEoRDcZqE4qb1gevSBwiEn1EDEYpokF/bUNx78zBGyAQpeSMRClC0VvUYJQiGvTRLxQ37xy4QQJRikjwtcjBuNklHO+urV2el1b6h+KRSwkVhc9EgndliMa97Btly/WU/bkYYU4oAssaiVKEIoJswaiJtIGOWEOR/t5ohOKTrKEQiVhWCkYLr27Co38j/hHB+JtQ3MkaiVKEIjLRyEkwfhOK/4gEvQlGToIhFKWU3JEoRSiyEYycdg7GP7MfAOzm4/JD3BO6XmPcQ5lh+4nCNMFsJox8dpsutg5F9kiUIhSrEY1cdgmGS0+JicR6XJbKZZfLUdtOFKYJMjBh5LLqhGGiaGSHswrGM2HksuqEseVEYZogM1NGHqtMGN9nP4AVrHgGQVz3JwmiEdttb8gejO0mitbTxKxImCj4TDRyyBgNE0VCIsEjJo0cPp9cZgjHVhOFaYJdCUdOZyLScn8SioNEgsyEg3dsc+mpxzudIKtHJxziwTPbhKIl0wQrenZ8CQhbhMI0AcfVTlBEZA9bhKIl0wT8JiJ7EIoERIKM3jluH0VlxnEvbo8t/64n73QCzto9ICaKF4kE7OvzOtwtHEuHwk1soIfdwrF0KFoxTQA1q399yrKhME3Q3dEziAxf7sNhK0Zj2ZvZrUJhmuAPvQ4I8dhC1nAsOVGYJmiu9xlDxq8U5W1Zp40lJwrTBE1F+GUq4VhWhmAsN1GYJmgqQiRKefw4xGMJGaaM5ULRSpT9gYmiHwTisZyo0Vjq0pNPYdNM9Ei8SjjSixAME8UDq+wRHLTSAWDqSC/ClLFMKNyboImVIvGMeKR1i8boYCwRCpGAk54FUkBCGj1lLHGPYoV7E6W4PzHdDtNEKwISTs9gpJ8oTBM0IRLvefX5OhOUWa9J0gj2nDJSTxStIzF7rzBRTDT7xSe+hAFpFYy0E4VJgmZEglck/JqVVlNGylD0iIS9AnjL/aaxeDS+v7rp/gyykZokgHBu0UgQjFLe/+GllyeKzxv06HAIBF0YJWkpWTBuvgrH4UtPo8IxIhD2CqCppMG4+RyOZvcoHm3oZ+JhgqA7Zwj0ljwYN11vZmfY7O0VQHfXa+pY/DP7AcAUzhAY7XpNe9xtHYqkrxmQWcKNZ9tQJHytaMWLz2zJjsFtQwEwVaJYbBmKiK+P73kaJOKLz76SHI9bhoJNJVmUbCbBcbldKBK8JsBugm9M24WCTQVfiBD5GN0qFIFfB3rywsMp24Qi+l4x+sfSgYCCblTbhIJNBV148FTAYzblDxe9K+Dzvp9XXoSW34XjRSezYN8NtUUomOidDbvVT02KBCsIFIvlQ2HPmOjsk/9OOLzQ0M3SobB3TNTjyfeCspsgU4Wb2QCRBThBWjYUAZ7bty3zFtmMTz5ENnlNLRkK+9REnnzoY+LaWjIUAEuaFIvlQuGEdiJPPvQ34SdVlwqFfQrYxsANb5lQrBKJtDe0V3kBIJNB08UyoQDYVudgLPGBOyezk3kBIIb7tdjwg3rpQ2GPAnjg0eZ4MB7fLpePf08+nGlWjsTH5cfsh/CalV8E2EklImknCvsTQEOVTTXlzWyRABjn+6ubboAvMCyliEQoXgzYwsuXnlr9psxR9iSAOb6V0uZmdq9w7ByI8De0d35xYCPNbmb3ePuufQhgvi7vejoTDXFIwgsF2+j+9lj7CUBuKd8eC8A4QhFY2m+SBZYiFABUCQUAVUIBQJVQAFAlFABUDfua8a8+eOfzFgAxdQvFu5/I/vzPCwdADM1C0fpLAW//PsEAmOvwt8f6mvFxQn6L7M4vCGzmpYkiwo8WmTAA5vgeIQLvEAyAsdK+PTZb4JbjBYBtpA1FKfYqgBFSh6IUsQDoLX0oSvkVC8GYwJMOW1giFAD0s1QonOACtLdUKEoRi+E84bC85UJRir1rOE84LG3JUJSyzt4V8us7gK0sGwoGW6XMwF+WDoW9azBPOCxp6VAwgQ+1wHKWD4U9axLBgGUM+ynUmS4X3zY7TS0WPV6Ud+PkwIAvbREKgoowcfgNXvjSNqEwVfAS4YC/bBMKOEQ4YK9QmCo4TTjY0FahgOaEgw1sFwpTBV0JBwvaLhQw1H04RIOklv/A3SMR3pXJhm4fQnQAksyWoSjFWmUywSCRbUMBIQgGCWwdigzr89v15+yHwAiCQWBbh6IUa5NgBIOAtg8FhCQWBCIUJf6adPlpU6YLghCK/1iPhOXgZDKhuGM9EpaDk4mEIgmXnxALZhGKTyKvRbEg9AHKsoTiAWuR0BygDCYUT0Rdi6YKYDShqBALwop6cLKk4V8z/vPBNy3/CHzM+/0KwnJwMsi3y+Xj35b/wkchOCpKQKKuxY/Lj9kPgQiiHqAs41QoWkbhK7OjEXUtigVhD06W8VIoRgbhKzODEXU9igVhD06W8O2jtL30NMqsYERdj2KxuagHJktI+66nWVNO1DebeCfU5qIemCwhbShKEYvPxALoIXUoSol1/ySCb9efgrGrqGcwpJc+FKXMiUX0NSkWQCtLhKIUsXjEdAG0kPZdT8+MfjdUpjebeGfUJl44KL+V8n8DHsk2PkpZah/9bJmJ4mb0ZBF9qrhnwgCOWG6iuDFZvM6ksRgTxXCrTxTDvxSQeO6nDNFYgC8LpLFlJ4pSTBUt9ApHj0tgInfni4PRRNHW6hPF0qEoZWwsVgzFI+9uyLPvi2wZEKEYSiiSM1Xw2RbhEIqhhGIBYsEjywejciAKRVurh2K5t8fCq7xdGF6zRSh8HxQ1YgF1W4RitEwfwuMXsYDntgmFqYKviAU8tk0oRjNV5CQW8DehgE/EAv60VShcfgJ431ahgFctMVW4/kkjQtGRdQqsYLtQuPzEq5aYKqCB7UIBwHuEojOXn3IzVcCmoXD5CeB1W4YCgNcJBXwh9eUn1z5pQCgAqNo2FCPvUzipAzLbNhTwDpef2JlQwA7uYyEcvOn77AcADCIQHPT/c36wb/8mqQsAAAAASUVORK5CYII="
}
}
],
"flattened_raster": "Error: not possible calculate flattened raster",
"tiledate": "2019-06-26T00:00:00.0000000+00:00",
"tilenames": [
"L309/HLS.L30.T16TDK.2019177.v1.4_05.tif"
]
},
{
"band": "Red",
"download_url": "downloads/result_raster_20190719_163615_9237.tif",
"features": [
{
"attributes": {
"CellSize": [
1E-05,
-1E-05
],
"CoordinateSystem": "GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 84\",6378137,298.257223563,AUTHORITY[\"EPSG\",\"7030\"]],AUTHORITY[\"EPSG\",\"6326\"]],PRIMEM[\"Greenwich\",0,AUTHORITY[\"EPSG\",\"8901\"]],UNIT[\"degree\",0.0174532925199433,AUTHORITY[\"EPSG\",\"9122\"]],AUTHORITY[\"EPSG\",\"4326\"]]",
"Extent": "-87.91751032820102, 40.14826234941817, -87.91357032820102, 40.15643234941817",
"Legend": [
{
"Area": "43.72 %",
"Count": 139712,
"CountAllPixels": 319546,
"Max": 1187.03823852539,
"Mean": 901.299850463867,
"Min": 615.561462402344,
"color": "#ffcccc"
},
{
"Area": "16.03 %",
"Count": 51217,
"CountAllPixels": 319546,
"Max": 1758.51501464844,
"Mean": 1472.77662658691,
"Min": 1187.03823852539,
"color": "#ff9999"
},
{
"Area": "10.26 %",
"Count": 32793,
"CountAllPixels": 319546,
"Max": 2329.99179077148,
"Mean": 2044.25340270996,
"Min": 1758.51501464844,
"color": "#ff6666"
},
{
"Area": "13.34 %",
"Count": 42634,
"CountAllPixels": 319546,
"Max": 2901.46856689453,
"Mean": 2615.73017883301,
"Min": 2329.99179077148,
"color": "#ff3333"
},
{
"Area": "10.96 %",
"Count": 35023,
"CountAllPixels": 319546,
"Max": 3472.94534301758,
"Mean": 3187.20695495605,
"Min": 2901.46856689453,
"color": "#ff6666"
},
{
"Area": "5.69 %",
"Count": 18167,
"CountAllPixels": 319546,
"Max": 4044.42211914063,
"Mean": 3758.6837310791,
"Min": 3472.94534301758,
"color": "#ff0000"
}
],
"Matrix": [
817,
394
],
"Max": 4044.42211914063,
"Mean": 1744.29493687106,
"Min": 615.561462402344,
"Percentile5": 699.947814941406,
"Percentile95": 3536.0556640625,
"pngb64": "data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAYoAAAMxCAYAAAD17PSPAAAj90lEQVR4nO3d2ZUbObZA0VAvufAsSZ/kU8smpSUyQu9DxRbFIsEYMNwL7L1W/3RVJWMCDhGcvvz68ePnBgAv/Gf0BgAQm1AAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFQgFAkVAAUCQUABQJBQBFX0dvADT3+dn27398tP37MJhQkFvrCPTcBsEhKKEgvggx6OHdfgoJgwgFsawShTNeHRsBoTGhYBxRqOPZcRQPKhIK+hCFvh6Pt3BwgVDQhjDEIhxcIBTUIQy5CAcHCAXnCMNchIMCoWAfYVjL/fkWjeUJBc8JAzdWG8sTCn4TBvay2liOUKxIFKhFNJYgFCsQBnq4XWeCMR2hmI0oMNrnp1hMRiiyEwYisrqYilBkJA5kYXUxBaHIQBjITCzSE4qoxIGZiEVqfjM7ms9PkWBOruu0rCiiMIiAoKwoRrOCYCWu9ZSsKEYxYIAkrCh6s4Jgda7/dISiJwMESMitpx4EAkjMiqI1kQCSE4qWRAKYgFtPrcwYiav75JO5kJJQ1DZLIFrshx+5gZSEoqbskei5/b6GGtIQiloyRiLCNgsGhCcUNUSYcPeKuq2CAWEJxRVRJ91HWbZz23wd9Qqc33SE4owsE2+W7XwkFhCKUByRZeLNsp0lYgFh5ArFlQnw7KSTadLNtK17iAWEkCMUNSbA2SbRe7Pvm1jAULFDMfMEWMMqx0csoL+7+SVmKFaZAK9Y7RiJBZx3cb6IF4rVJsCjHB/gmYZzQ6xQmATLVj8+VhXwW+e5IE4oVp8ESxwbWNvgOSBGKEyErzk2f7OqYBWBxv74UAQ6GOE4NrCOwON9bCgCH5jhHJvXrCryinzejo65GvuSZJyPC0WSAzREhGMzYtBALz7Ee8iYUCx0gA8bdWyuPm7vX6+zquAo885p/UPhZL024ti0/MlTEzmjmW+qGP9iNr+N+BnSHo8jFowiEtX8p+ujOXHPzRiJHo/neuKZz0/XRmX9QuHEPdfz2X3W1z+YQ6/XrqiuTyicvOd6HJcoz64ibANzc4010/fWE3/0ikQk0baHflqvJlxbTbUPhRP4bytGopVV9pPXXAPNeddTb6tHwjuh1uN851CYN9qGIvKENcLqkWA9bjnFc+KYtQuFE9hflmNuVbEG5ziGCvOCW0+9tJ7Es0SiBeGJx/kYq/J80CYUK09az4gEK+kVCdf9vzU6Jt4e25pIPJd1uymzkhij8eel6q8oTAB/OBasRCT66zTH1F1RmBj7cryJQiT66zj+3XpqxS2nvhyPcUSirwFfy1MvFAbqH47FPo5TfiLR16Ax4+2xtflQHSsYHYgVx8DAfa6zoljxpD0jEqxgdCRWNHjce42iFhP4eM5BeyLRX4Dr+vqtpwA7sQzHmqP2TOx7riuB6C/QePcaRQ2BTihs23ZsYs8WgRXGW7B9vHbrKdjODNHzp0xnVHu/Zj1Oe3185Jv4+VvAa9iK4oqAJxSmNvuYi7R/d9siFGf1PKGRLp4MVv022RX3ubXHsdfqGEcY401+uCjCjo2y8r6v7tm5jzBBR9iG1iK8/bz2+R85lxx47NwritKOzjJwROmcmquKvZPHLNdcRJG/EufMqiNJIG7yhmLU4DVx53E1FkfP9ahbXrMHKnIkevy9Wi5s17lQjD4QRx6/ZjB67/fo4zyDM5P31WeXs0/cPbUcA6uMrwr7me+T2Wd3+urBWuWimtGec3f7Rs4a59m1UodIXFPxW2Zz3XqqMdmfeba3wkU1O+cwj2y3miKqvI/5VhRXrXCRMF6v62ym21w9fmdh9vHf6BjmWlHUcmRlMerCmv2Cvue+/rp8s0E9qX4zu5UW70x4NzmtcHHRzswBPPN5Ak+62mm8j3lC0UJpIK9wccERZz6MNlrEbaqtwz6u9xoFcFzGCTfjNh/VaR+F4tmBXuECo48ZrqWM+5Bxm4/quI9r33oCyrJNuNm294wB+2hF8ew1illfgISZiUQzQgGtZZ3Asmx3j89fRDBwH9e+9WTlAHmtEIebwft6bkUxwwT7bh9m2Ec4K/IkvMoKYtvC7GueFcXHR4gDBgyy0vgPtq95QlHT3tWCOFFLq09pt/i7ka75SNvSWuB9PR+KrJPo0UGVdT/hjCjX+ojtuPqYPX/3pLNcK4qrk7bXHSCunhNni8dKNPEflSsUV1yJhFUFkdW6/ZTxWXzUx5rMtVCMmECPPqZVBFFE/jbZGX/mVxiqyfmBuyMvRvd+zKyPN5pBfc3V3/nupfXbPWv+pC3/c/3W06jbMreJ9Mz34sOMzqxYsv9wkCB0kf81ip5R8FoFV7W+/RTt1xu9aDyF/KHoTSyI7l0sMq4ijLmhvvz68eNnlb+00on0To12VrhtOPs+1rpmV7v2A8v5YvZosw902pp5Ary6b16MDqleKEyesLar77wSh7CsKM4SRq6YbVI8uz8CkULdUJg861vtmJo08rkSCVLwrqcrvAOKlUUORIR3fU2kfihMnrBP5K/0eCdCJM4eu9qfM5n5a97/Ue/tsfcC7mhTWT+4FFnWCfSojPt55lqscf1mPFY9dJgb2tx6sqqAfbKtKnpHItOxGeXZMao8/3qNogZhZAU9IyEQ19wfvwpzU7u3xzrRXLFSeDPsa69IfHyYO2qrcEzbfo5ipRPeel9XOpbE0jMStHPh+PrAHUQQdVXRIxJWEf2cPM7tQ7HSBbDSvvYQdfJcRa9IEJ4VBUQRKYyjPxRHKH1CsdIFsdK+Ut/oWFz57iW/ZT8tKwpiGz1xjjBqn3v97rZIpNMvFCtdHCvtK230/nEskVjHiXNgRUF8K64qti3HV8Osem4W0zcUnk3AMa0m4hq/A+EdTsvov6JY5WJZZT9pr9aP+9T8mVGRWIrveiKHbF+e18Jtcj5yHFqsSERiOWNC4Uv04LyRY8e4XZIVRUuCyCyifAvs9+/P//9v3+o+Dn8Z964ny1GOEt0xokfi3T/j3w6em7FvjxULiC1DJGjO5yhaE8O6rCr6uPLuKNf8dMaHwkUFsUT76VKrieHGh2LbxAIiuPoZC+N4WjFCsW0usnfccvnDsajv6jEdPX696+m4A+csTihmNnoQwSs1Pqnd+vp+FwGRaC7W5yh87oC9fFL7uhpjrdc5EIOhYoVi29rH4vHCFqb3Xk0Gjl1Otc6bUC8jXii2rW4s3l3M9//cxPfHnkng9u84bjnUPE8isZQvv378+Dl6I4pGfAFZy692HvHfHnHl+I0IhglrH5HgmZ3XRcwVxb09z1prX7irvlZy9TiuetwiEwgqiB+Km94X6UqTXs1ju9Jxi04kqMTbY0tWGBzZ91GU/q3WjxPdZL9GuEwo3qn9bDuSVtsTbT9XUjsQziWbUOwz42CZaZ+sKqwiaEooILvaoRQJHgjFXjMNnh77MtPxikwk6EAomMNqt59q32raNpHgJaFYjckgvxZRdF2s58B1JBRH1BhMBiRntVhFbJtrkreEgnnMfPtp5n0jvDyfzOY6zxzzaR0I1wQ7WFEcZWDRQ6vbTPdcy+wkFFkY1Ptkv0XTIxBwkFtPEEHvOHjiwQFWFGfU+Dpu2snwjPy2crCCIAErCmgpYgQ8UeEgoWBOn59jJsSIYYCL3HpayWqTWK/9zXQLyWqCE4TiLAOuLMqk2Xo7ouwnNCQUo5wJjTid02Iyz7KCuOf64d6B60EoWEOtST1jIOAioVhNj0ku6kR6ZbsEgoV51xNruU32e5fds8TBbScu+PLrx4+fozcitasTyZn/vsbk1WrimGVinY1Q8MzO8erW06pM6MBOQkE94gO57FxpCsXKak7sIgHTEoqMat5vrjHBi0RsXp/gIqEYLcIgvvq2UWBqQsFvZz4nIBKwBKHIavTbW0UCluEDd1d9fMw3ac62P8AlVhQRRHidAljTjvlHKDITGN5xjVCBUABQJBQAFAlFFGdvEbi1ADQmFAAUCcUMrCp4xnVBJUIBQJFQ1FDrmZtngEBAQjELkQEaEQqYkScOVCQU0VwZ4CYHoAGhgNl4wkBlQhGRVQXQ05t5QyhqMUEDkxKKGYnWupx7GhCKqK4OeBMGUIlQAFAkFDXVfhZvVcERzjeNCMXsTB7ARUIBM/CEgIaEIroaE4BJBLhAKGqLOilH3S4gPKHIwCQPDCQUKxGcOTmvNCYULbQYuH4cCRhEKAAoEopWrCqASQjFqsQC2EkosjHBc8/1QAdC0VL0QRx9+4AQhCKjmhO8WABvCEVrJmIgOaHIyqoC6EQoejARA4kJBQBFQtFL5A/g1f5bQC6fn8V/LBQAFAlFT1YVQDRvVhPbJhSQ245BDlcJRW9WFUAUO59oCMUIJmNgtAOrUaGYhfisy+0njjp4zQjFKJEn9sjbBlxz4omFUIxkQqYWqwr2OHmdCMVMhGdtYkHJhetDKEaLOrlH3S7guItPIoRiNib4tVlV8KjCNSEUEZjcqUksuKl0LQgFrwlYXmJBxWtAKKLw6WpqE4v6Pj///l9Ulbfta9W/xjUfH7EvPvL5/PTEoYZX4/Lx/49wrBvMIVYUlEW48LnGk4/zjq4cRq80Gj22UMzKBM89sehrxPFu+JhCEY0JnlbE4pirx6vn6qLx4wgFrEQs9ql5nFof8w7nVCgiqrWqiPZ3iEEs+kt+zIUCVpR84mqq1bFp8Xc7nUehgFWJRX9Jj7lQROV2Dz0knbjoSyhm53UK3hEL3hAKQCx6qnmsOz2BEwrgN7HgBaGIzO0eehMLnhCKFXidgiPEIpcO41IogH8b/eV2hCIUwGurxWK1/d1JKDjG7af1mDzrS3ZMhSI6ry8QQbKJjbqEguNEZ01et1iWUADHiEUdtY6jrxmnqporAauKtc0Yi4z75Ntj+R+TMhFlnFijuXIMOx5/oViNVQU1ed3iuqPHb8Ax/9r10ZjPx4eJgt/XgCcO592PoWfHcfAYEwqIqDTpRg1z5lhEOqaRtuUfX379+PFz9EawQ+2LJ/rfW0XNiTXSOcgWjEjHLiArCupwC2qflhPo498eeT4yrS5ct29ZUWSSYRVg0P0tymQ56rxE2f8S1+xbVhTUFWllcWWSOrMPkSfF27b1Pje3x4t8bHjLiiKTTCuAEbEwGe3n/PwW5UlNcFYUtNHrGWzEySeDESuMTK9b8BcrikwyP/uv9RgmmjZ6P7OOcB6tJnYTimwyx+LMY0WYUFbS8zoYfW6FYje3nuhv9ATBaz3fjDDyhW6ROMR3PfGbyZubj4++14PviwpPKIDnej956L2SYTevUWTU8kI3iHhmlhe7Xd+nWFHwN7egeGbE6qL2LSmROM2L2cA+oz/dfb8NZ/97TnHrKaNMn3tgTlGuj4xfx56QUGQlFkTgGlmC1yh4zesVvOMaWYJQZGWAEoVrcXpCQZlJgD16f0iPrrxGkZ0PKc3v7AQ86py5VqYjFNlF/TI/zpvhw2aulakIxQxMAPn5ugwCE4oZjBiMJoDrItzT9zZrdhCKWYhFHhEC8UgwKBCKmYhFbBED8aj1+XS9pCQUsxGLeDIE4pFvKOaOUMzI2yLHyxiHZwSDTSjmNXIQRpkA3k3WLbZzlkDcE4vlCcXMRg/Cno9fe4Leu+0zhuEVwViWUMwuwgD0zH0eYrEkoVhBtAF4dHtEIR7BWIpQrMLgozZvpV2Gb49dhWfl1Nb6G2Nds2EIxUoMPFpoHQvX7XBCsRqDjhZaX1eCMZTXKFbl/i+t+N6o6VhRrMqzM1rpcW1ZYXQlFCsz0Gil17UlGF0IxeoMMlrpeW0JRlNeo+A393zz2jNBrvbdX67nqoSCPwyuPK48e15t4nZdXyYU/M2gimvUFx9mf8xnomxHEkLBcwZSHC3vva8ci6tm2Y8dhILXFhoIYfV6gbb3uXZtvRfoGAkFZYEu1qWMeAePWMQ36JgJBe8Z0H2Nfptnz/Pt2rquwzEUCvYxoNsbHYh7Vhf5VTymQsF+BnM7kSJxIxZrKRx/oeAYg7muiIF45FbU8oSCcwzo6zJE4sbqYmm+64lzMk1y0WT8XqLe25vt+EzOioJrPPPbb4bJzwf0liQU1GEwl80QiRvf27QcoaAuA/lvMwXi3ujzPPrxFyMUtLH6QJ41EPcineNI2zIhoaCt1QbwCoG4F/n8Rt62ZISCfmYeuKsF4t4M53WGfWhIKBjnyuA8MzHXngxWjsOjFSbaFfbxBaGAe6XJQBjKVpxIF9nnr6M3AEIRA454vF4mDYcVBVDPpBPlKRMdC1/hAdRjRfZHxq9qeUEoAFqaIBhuPQH1TXTbpYlkx8eKAqgv+TPo5pKtMoQCYJQkwRAKoI0EE2AYwYMhFABRBA2GUADtBJz0UggWDKEAiCpIMHyFB0B0g78qxOcogPaSfW6Av7n1BECRUADtBbjPznlCAUCRUAB9WFWkJRQAFAkF0I9VRUpCAUCRD9zBO68+A+DZMYvwgTu4qfGhMPHYxwfwUrGiYE2tJqr7vysaTEIoGONxom45qY569ioaTMKtJ+pyS6FMMP5wraRhRcF5Bvpxt2MmGCQiFOwjCnV9fooFaQgFzwlDe1YXJCEU/CYM41hdEJxQrEgU4hELAhOKFQhDDmJBUEIxI2HIa5VYuEZTEYpZGHjzWCUWpCEUWQnD3MSCQHzNeDafnyKxilnP86z7NTErigwMrHVZWRCAUEQmEEAAbj1F5PYS92a6Fmbal4UIRTQGEhCMUEQiErwyw7Uxwz4symsUERhAQGBWFKOJBHu5VhhEKEYy8FmFaz01oRjFwOEM1w0DCMUIBjsrcb2n58Xs3lYfNC333yeYoYkvv378+Dl6I5axUiRm2teIAYq4Tc/MdB0szIqC62afDB73L8skDZVYUfQy22Q62/6cMToYox//HdfINKwoephlwMyyH7Xcjkf0CRsusqJoLfvkmn37exoRjKiRct1MxYqipayDJet2j+a3I35z/UzH5yhayThYfL35dY4fExKKFrJNFgJRV89jGe28RdseqhCK2jINFIFox3FlIkJRU5bJQSD66HWMo5zLKNtBdV7MriHTAMm0reThupqaFcVVWQaIVcQYjjkTEIorskwCWbZzVj2O/8hz7PqanltPZ2UYHBm2EQjPiuKMDBNwhm1cyaznY9b94i9WFEdkGRQZtrPFNq7+qejenwzPcJ1RhVDslWVQRN3OUffpV48HVOBLAfeIOvk+irSdkbbl3uhw9Hj8Ho8R9fzShBXFO1kGRITtjLAN7/hqcDhMKF7JMOndjN7W0Y9/hmCcl/F8c4lQPJNpIIza1kzHqGTGYPi6cyrz9thHmSbAEds66ye8V/teprOybz+nCMW9TIOg97bOGoh7s+8fnCQUGfX+vYOVJtBZ9rXFfsxybDhMKG6yDIKVfxSnl1n2u+Z+zHJMOEUoti3PIOh5Hz3LMcnIsSUZocgyaHt9sjnL8WhtluNQYz9mORactnYosgyA2b+mOqpZjsnZ/fDEgX/4HEV0rQeqiWANRz8v4rrgzrqhyDAQRGJeoz4UVwqG64EX1gxFhgHRchsz7H8Us37K2TXAAeu9RpFhgIgEEMh6oYhOJOJpddycD5JYKxTRB6ZIAAGtE4roE2XLZ63R931lzg0JrBOKyNzaiM+xZGFrhCLyIBcJnCuCmz8UkQehSOTiuLKouUMReWCLBPecNwKbOxSrMdm0551pLGjeUEQedH5UBkhk3lBEZULPz6qCxcwZiqiDzesS7OF8Esx8oYg6yERiLr7Zl4Ws+e2xvYkEZ8z6zbWtPBsPjl8VX379+PFz9EZUE3HiFIm59ZiITHavHRkHjuNp8916isRkPj8/UzvGme8w871npwlFK94Zsw6x6OvqsRCMw+YJxSonfpX95N9WP/e1J3jB2G2eUETi4ltPr3O+6uRmhT7UHC9mRzrRLmh6vmi6wgu0va77FY7lSVYUNYkE29b3XM1+XTiWIeRfUUQ6ud4Ky73ez1BnekY8+pqf6VhWYEVRy+gLm3h6XxO31y8yX4tRtj/CNgSSe0UR5WS65cQ7o56hZnlmHPU6z3L8GhOKyNsQYf+oZ/SkM/rxH2W5vqMdtwHyhiLCRSYSnBFl4um9Hdmv6SjnbYCv/zp5Cx8M6CLKl/2VJu4925d94j8qynkb4Muv//63vKKIeGAiXKBWE9QQcXxRtuA5e/+upyjvQriJsC0iQS3RxhfvLXi+9r89dsGD051jvC7nPpfFztf7W0/PjFp6RTg5PlRHawve2khtgfN17gN3Iya1CBOpSNCD21G5LHCuzv8U6u3g9KhphBMRYRtGm/GZU+Tz2nOMcc3k74g6d+vpUcsDFGUgr7qamPjiL4p4XlY9F9lMeJ7qhGLb2hycKIN1xUhMeLFfEulcOTfxTXaO6oXiptYBijIwRYJnopw/5yq2Sc7P+dcoXqlxXzXKIFzNJBd1F/fHauT16nWM2CY5P/VXFPfOHJxIkVhpNZH8Qg4jwrl1LuNKem7ahuLeuwMUYYDdEwmuinCundu4Ep2b+reeXokwaKCn20QQ4dbUtqWamJYw+gtZD1yX/VYUmVhN0EKk8++857H3XDW8vvqtKIjHZNFXlBfAnz2+ayGu0dfKJhT/ttJqgnEi3Ja692w7xIN/CEUPUSaDeyaBGD4+Yl4f23b9h42YhlDcizpgmVu01cUer7ZVQKYkFK1FHPwGc0wZg/Ho3bafvfZ6HBPj4iWhuMk8OJnLDMF4JfI+eZ3mJaFYjQs/j5mDkYXPoWzbJhRtGeDUIBgxLPyWYqHYtnUG4EIX9pQEI5aFVhtC0YrBTCuRPrjHb5N8S+wrQrHKQJv0Al6eaMQy6SpDKFqINmAnumApEI1YJorG2qEwmJiVaMSSPBprh6KFaIMy4UVJZY/XQLRrdDUJoyEUsBrhiCPJW27XDcUKgyPoRUcwz66TFcZHREFXG+uGooVIgyvQRUZCpesn0nU+s0DRWDMULnQ4792kNWp87ZlMs479wbeo1gzF7KwmGCny9Xdk2yJHpXM41guFX7AD9ng1+UYc643DsV4oZhf52RzMIMO7xir/sNRaobCaAGrL9OHGkwFZKxSzs5oY6/v3ff/et29tt4NxMkXj3pvfRxcKuGpvIEr/vnjMJ2s0Hn1+LhQKt52o7Wgg9v4t0ZhP8t8SWScUs3Pbqa+akXj3t4VjHklXGWuEItEJIYGWkXj3eKIxj0SrjDVCAbX0jsS7xxeO/D4+wsdi/lC0PAHBTy4LEI45BF9dzB2KoAedpEavJvYQjtyCBmPuUKzCC9m8Ihw5BbsdNW8oWh/kQCeRDjKsJvYQjjwCrS7mDQXwXsYP/9WMdvR93bYQq4s5QxGgwJBWaSLuMbH2XL29eqxoARm8uvjy67///TnkkVvpcSCjhchrFG3NctuJa6LEY8D8M9eKItoEDswjygcfB9yKmicUIkELVhM8MzoanW9F/afLo7TWMxKCBNz7/n3cE4pOt53zh8LEDUQwKhgfH82DkTsUvSMhSmtx24kzRq4uGgUjbyhM2kBUo29HVQ7G190TbpS3YI4KhDABR33/Pu4dUhVf8P7y69u3a5+j6BGQCJN0hG14JkrAZ+O2EzUl/wzG9bfHvnrgqxNYpIk50rYA+YxcWdw7+Qt77T5HMcvkOst+AGNFicXN45P5wlw3zwfuoBa3nWglWizuPbsL9E888r7rqQerCaC2TE9E/nkHlVAAUCQUr1hNAK1kWlVsQvGcSKwr2QAmsUTXmlAAjJIkFkLxyGoC4C9CATBSglWFUNyzmlhbggELIwgFwGjBn6QIxY3VBDBS4FgIxbaJBBBD0FgIBQBFQgHbFvaZHAsKeC0KhdtOQDTBYiEUABEFisXaobCaACILEou1QwEQXYBYCAUEGIhQ9P370Ot03VC47QRkMygY64YCIKvOwfja7ZFo4/Pz+Y+is4/bTmR2f/1++9bsYYQCYAaPT3oqhmPNUHh9Apjdq9XyiYCsGQqAVe293XoXFKFgXV6fgNfuxod3PQFQtGYovEsIYLc1QwHAbkLBmrw+AbsJBQBF64bC6xQAu6wbCtbW8OsOYDZrh8KqAuCttUMxC19Jco5VBewiFFYVAEVCsW1isTKrCnhLKG7EYl1iAUVCAdsmFlAgFPesKtb27ZtgwBNC8UgsEAv4i1A8IxZYXcD/CMUrYsG2CQZsQgH7CAYLE4oSqwoeCQYLEop3xIJnBIOFfB29AZDafSz8GBKTsqLYw6qCPawymJRQQG2CwWTcetrr48PXeXOM21JMwooCerDKIDGhgJ4Eg4SEAkYQDBIRChhJMEhAKI7wNllaEQwCEwqIRDAISCggIsEgEJ+jgMh8FoMArChm4cOA87PKYBChOMoL2owmGHQmFJCVYNCJUEB2gkFjQnFG1NtPXqdYm1jQiFDATKwuaEAoYEZiQUVCcZbbT8Ai2n7g7uxkarKD67598yE9qqgTitrPrh//XtRwRP3Vu8/PuCseIJ0vv759+7n73x49+USdlKMafb6IwaqCi76mmkxu2xppco66qtg2KwugipwvZn98xJoAI23Lo6gRox/vgOKinKG4iTxBRyIWwAW5Q7FtcWIRZTte+fwUDOCU/KHYtjiTdJTtKBEM4KA5QrFtcSbpKNvxzi0YogG8MU8oti3PJB2NaMzPC9pcMFcoti1GLCJsw1miATyY8zezI3y2IcI2XPVs+3tE8PFxM4cXJjBnKLYtxkQdYRtqG7E/tR5TcOCUeUOxbTEm6gjbwG+jVkiQ3NyhgHfu4yEa8NR8L2Y/ijD4I2wD783+Ir53PnHS/KHYthgTdYRtYJ/ZgwEHrRGKbYsxUUfYBvYTC9i2baVQRCEWuVhdwGKhiDJJR9kO9hMLFrbeu56ivF01ynaw30Q/BPVl2/5v9DbM5Ne27f+l0ITWWlFEM8mksxRxZ0FrhiLSBB1pW5ift8hywpqh2DYTNOdZVbCYdUMRiWjlIxYsZO1QRJqgI20LwJ21QxGNWORiVcEihCLa5Bxte4DlCQUARUKxbfGexUfbHl5z+4kFCEVUYgEEIRQ3JmaAp4QiMvECAhCKexEn5ojbxN+8TsHkhAKAIqHIwKoCGEgoHpmUAf4iFFkIGDCIUABQJBTPRH32HnW7gKkJBdTgLbJMTCgAKBKKV6Le5om6XbCyyX+LXCgAapg4FkKRkVUFxDRpLIQCoKYJYyEUJZGfuUfeNmAqQgGrmfAZbziTHeP/B2RKIkertuiAAAAAAElFTkSuQmCC"
}
}
],
"flattened_raster": "Error: not possible calculate flattened raster",
"tiledate": "2019-06-26T00:00:00.0000000+00:00",
"tilenames": [
"L309/HLS.L30.T16TDK.2019177.v1.4_04.tif"
]
},
{
"band": "NDVI",
"download_url": "downloads/result_raster_20190719_163615_8965.tif",
"features": [
{
"attributes": {
"CellSize": [
1E-05,
-1E-05
],
"CoordinateSystem": "GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 84\",6378137,298.257223563,AUTHORITY[\"EPSG\",\"7030\"]],AUTHORITY[\"EPSG\",\"6326\"]],PRIMEM[\"Greenwich\",0],UNIT[\"degree\",0.0174532925199433],AUTHORITY[\"EPSG\",\"4326\"]]",
"Extent": "-87.91751032820102, 40.14826234941817, -87.91357032820102, 40.15643234941817",
"Legend": [
{
"Area": "16.41 %",
"Count": 52814,
"CountAllPixels": 321898,
"Max": 0.190133181028347,
"Mean": 0.155879547496601,
"Min": 0.121625913964854,
"color": "#ff0000"
},
{
"Area": "16.81 %",
"Count": 54112,
"CountAllPixels": 321898,
"Max": 0.258640448091841,
"Mean": 0.224386814560094,
"Min": 0.190133181028347,
"color": "#ff6666"
},
{
"Area": "11.3 %",
"Count": 36390,
"CountAllPixels": 321898,
"Max": 0.327147715155334,
"Mean": 0.292894081623587,
"Min": 0.258640448091841,
"color": "#ffff66"
},
{
"Area": "20.23 %",
"Count": 65126,
"CountAllPixels": 321898,
"Max": 0.395654982218827,
"Mean": 0.361401348687081,
"Min": 0.327147715155334,
"color": "#ffff00"
},
{
"Area": "24.3 %",
"Count": 78236,
"CountAllPixels": 321898,
"Max": 0.46416224928232,
"Mean": 0.429908615750574,
"Min": 0.395654982218827,
"color": "#66ff66"
},
{
"Area": "10.21 %",
"Count": 32868,
"CountAllPixels": 321898,
"Max": 0.532669516345814,
"Mean": 0.498415882814067,
"Min": 0.46416224928232,
"color": "#00ff00"
}
],
"Matrix": [
817,
394
],
"Max": 0.532669516345814,
"Mean": 0.326934527835111,
"Min": 0.121625913964854,
"Percentile5": 0.149247766626636,
"Percentile95": 0.487226303880616,
"pngb64": "data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAYoAAAMxCAYAAAD17PSPAAAm2ElEQVR4nO3dW5biRrOA0ex/9RTOFKkxNVP0IPo82Ng0BUJIeYnI3NvLD162u1QSyo+QuPz4/bv8VRjiq1xGbwI0cS3X0ZvwkcuTc7HH7/Ds50b0v9EbAMwnywL4SrbQtSYUAGwSCgA2CcVAv4y3QAJCAcAmoQBgk1AATWR95ZNXPH0nFIO5TwFEJxQAbBIKADYJBdBM1vsU/EkoAnCfAohMKADYJBTA0lwee08ognD5iVlZiPMTCgA2CUUgpgogIqEAmnP5KTehAJbms53eE4pgXH5iVhmmCtF47ufoDQAYTSC2mSgCMlUwqwxTBd8JBQCbhCIoUwWzMlX8J8slr59fDwfNAgXAvW83s4UDaO1SLmmeTbPj0tNXuXyLB32INDNzCSqP3S+PvY+FBQxgHYduZpsy+hFlZmaqyOHUq57EAjhLLOI7/fJY00V7pgpmJxaxVXsfhVgAZ4hFXFXfcCcW7ZgqWIFYxFT9ndliAZwhFvE0+QgPsWjDVMEqVopFhjceNvusJ7EAzlgpFtE1/VBAsajPVMFKxCIGnx4LhHb55y/GaR4KU0V9pgpWJBbjdJkoxAKowXQxhktPSZkqWJlg9CUUiYkFq7vc/UU73ULh8hPQkmC0Y6JIzlQBfxKL+rqGwlQB9CAWdZkoJmCqgO8yxSL6x3h0D8XoqeL2/Rmjt6M2sYDvMsUist3fmZ3VVhB8DzjAe0MuPbV+Nn9kaphhyhA7oIVhE8VtUa61uNVa5L/KxYILcGf4paejwWj57D9zLH6Va/rJCIhleChuoi1umWMBUJOXx26IFi+AEYTijYyxMAlBPpHfSyEUO2SMBRB78c1EKADYJBQ7mSqAVQnFB8QC8nDZqZ7//SpXNz8/IBZAK1Hj9u/7KJ7FwqL4nPdYQGxRF9ysNi893aYNi+J3IgoxiUR9u+9RCMZ3YgGs4OOb2WIBRDXDNBHxdzj0qiex+E/EqSLiNkFrERfYWRx+eaxY/MfCDMzs1PsoxOI/UWIRZTugJ9NEW95wV9HoRXr0z4cRZoxEtN9JKCqzWEM/0RbUWZ0OhctP342IhUCxGpHox0TRSM+FWyRgPpFCKBQN9VjARYIVRVpEVxDmO7NndVvIa1+iEwhWJRL9mSg6+SqXaou7SLCq1SIR5fc9PVFYtD5zdMKwn1ldlEVzRS49DfJs4b+PhzDAf0RirB+/f5e/jv7PFjOgNZEo5TJ4rT18j0IkgNZEIoZDE4VIAC0JxHcjp4qPJwqRAFoSiXg+CoVIAC2JxGsj982uVz0JBNCaSMT1dqIQCaA1kdhn1H56OVEIBNCDSMT3LRQCARDXtVy7vwLqx+/f5S9xAEYwTRzXMxb/EwlgBJHIw6fHAt2JxHk996FQAF2JRD299qVQAN2IRE5CAZBYj/gKBdCFaaKd1vtWKIDmRCI3oQCaEok+Wu5noQCaEYm+Wu1voQCYSItYCAXQhGliHkIBVCcSY9Xe/0IBVCUSMdQ8DkIBVCMSsdQ6HkIBVCES8xIK4DSRiKvGsREK4BSRiO/sMRIK4DCRyOPMsRIK4GPXf/4il6PHTCiAjwhEbkeOn1AAu5gi5vHpcRQKYJNAzOmTYyoUwFMCMb+9x1cogD8IxFr2HOufHbYDCE4Y1nYt13Ipl5f/XihgUeLAvdvj4VkwhAIWIQzs8Wy6EAqYkChwxuN0IRSQlBjQ2u0xJhRU0XLR2rrJNjsxIAKh4JCeC9i7n5U9JGJAdELBblEXtFfbNSogUfcTHCUUvJV14cu63RCNUPCShRYoRSh4QiCAez7riT+IBPDIREEpRSCA10wUiASwyUSxMIEA9jBRLEokgL2EYkEiAXzCpaeFCARwhIliESIBHCUUCxAJ4AyhmJxIAGcJxcREAqhBKCYlEkAtQjEhkQBqEorJiARQm1BMRCSAFoRiEiIBtOKd2ckJBNCaiSIxkQB6EIqkRALoRSgSEgmgJ6FIRiSA3oQiEZEARhCKJEQCGEUoEhAJYCShCE4kgNG84S4ogQCiMFEEJBJAJEIRjEgA0QhFICIBRCQUQYgEEJWb2YMJBBCdiWIgkQAyEIpBRALIQigGEAkgE6HoTCSAbISiI5EAMhKKTkQCyEooOhAJIDOhaEwkgOyEoiGRAGYgFI2IBDALoQBgk1A0YJoAZiIUlYkEMBuhAGCTUFRkmgBmJBQAbBKKSkwTwKyEAoBNQgHAJqEAYJNQALBJKADYJBQAbBIKADYJBQCbhAKATUJRyaVcRm8CQBNCAcAmoQBgk1BU5PITMCOhAGCTUFRmqgBmIxQAbBKKBkwVwEyEAoBNQtGIqQKYhVA0JBbADISiMbEAshMKADYJRQemCiCzn6M3YBWXcinXch29GeHUimikfVvziUGk34t1/bj8vvw1eiNWstqJb5pqY7XHEWMJxSCzneiCMM5sjyXiEYqBsp7gohBX1scUsQlFANFPbmHIKfrjijyEIogoJ7UozCfKY4u8hCKgnie2MKxDMNp6PJdm2t9CEViLB5owUMpci1hNvc+PLMdBKBL59EElCryTZaH6VObHfsRjIhRAyMXplcwR+FSU4yIUwL+iLEylrBWEd0YfF6EAnuq9OAnDPiOiIRTAW7UXJ1E4r2cwhAI47N1iJQjt9QiGUAAk1zoWvo8CILnLP3+1IhQAk2gVC6EAmEiL6UIoACZUMxZCATCpWrEQCgA2CQXAxGpMFUIBMLmzsRAKgAWciYVQACziaCyEAmAhR2IhFABsEgqAxXw6VQgFwII+iYVQACxq7+dCCQXA4t7FQigA2IyFUABQSnkdC6EA4F/P7lsIBQDf3Mfi58DtgOp+Nf6S+Qi+Gn43Mty7xUIoSGeFGGx59vuLBy0JBaGtHoW97veTaFCbUBCGKNRx24+CQS1CwTDC0JYpg1qEgq7EYQxTBmcIBU0JQyymDI4QCqoThxxMGewlFJwmDLkJBu8IBYeIw3xcluIVoWA3cViHaHBPKNgkDogGQsE34sArorGW6z/HWygopYgDnxONeV0f1gOhWJQwUJNXTs3hMRA3QrEIYaAHwcjpVSBuhGJCosBogpHHu0iUIhRTEAaiEow5CEVCwkA2v8pVLALaM02UUsqPy+/LX423hQrEgRmIRTx7YiEUQQkDsxKLeN7FQiiCEQhWIBYxvQqGUAQgDqxILOK7hUMoBhIIVicWOfxv9Aas6Fe5igQUT5ayEIrOnBhANkLRiSkCnnNexCcUHTgRgMyEojGRALLzER6NrBGIo69YWWHf8Akf8RGbUDQwXyRqn8CPf95s+wvmIhSV5Y/EiGd19z8z+/6D+QhFJbkDEWnkFw2IRigqyBeJSGHYciliAeMJxUl5IpElDo9u251lP8N8hOIggejNdAGjCMUB8SMxSxweicWsvDQ2NqHYKX4cSpk3EPfEAnpLFYpPFusaz1ByxOFmhUjciAX0FP77KHIt1iOsFIhHHhszcNkpvrAThUC84+QC+ggXCoHYQyT+5hJUdqaJHMKEQiD2cmIxB5HII8THjIvEHpciEs/YJ9Da8IlCJPawGDIX00Rsj+vy0FCIxB5OKOCcs2vtsFCIxB4isY+b2lBKu3V1SChEYg+RYE4uO9XRcx3tHgqReMdJBDw3av3sGgqReCdoJL42/t2vblvxhstPzCnCutktFBF+2diCRGIrCnv/+zDxIBqXnfaJtl4Of3kspQyPxKdx2PvnCQbsFi0O97qEIvIOGG9QJGrHYetnCAYJ7F2nak5FWdbG5p8em2VHjDEgEj0C8Uy3WHi8RRXpslPrdenxd82+DjadKLLvnLY6nzSjAnH/800WDNRzPZpt7WsWitl2VGqjI3HjUhQDWIvOczN7iE7TRJRAwAACUU+TUDhAW0Si7WUo76eIqOf9CetPTX8ft+qhcJC2iMS/3LOgAevPJ/avR1VD4SBtEYlvxGIJvaYJ68+Wc8fAPYouRAJaEolHddecat9w50C9IhKbsm43u/SYJqw999p8E2aVicKBekUkxnBDm5W0X2dCfGf2nERitxl+B74xTbTWZnp45nQo1j5Qr4gEa4v0cR1z6rt/T4VCJAYSiTcsVKN4lVNL/aaIey49VWeBOkT4pmCSaGncvj0cijVr/o5LTuuyQIpEK2OmiHuHXvUkEs84SeJp/eqnx2N+++f1zg+RaCXGfv14ohCJZzoezJmniTS/27tneDFO7l5EopU4+9U7s09Z7DslUqo5VXxyvOd/L4dAtBRr3340UZgm7sU6kLR25HjP+xgRiZbi7dvdE4VI3FvoK0yncObZ/dljPXayeLWgHz2fBaK1mPs3+aWnVzu11YkZ8yBOpdknyn66YOc+1u8W9E8CIg69xN3Pu0IRa5rYszOf/TdnfofBB9A0UcmeVyW1ONb9poqzi7oojBJ0v/+z9iSaKGpcAnjUe8EghjmP7UqLfNsnr3v344gXSTS08YT0bShiTBOtdmSQA7TFNDGJtlPFSpFo59N9eP/fHzm2AY7ZzvUlwUQRYGfSl2++o6saa8wn0ch3KXszFOOnCZFgJm2mCtPEGa3uSQV04upE4Iki6M7uyWUn+KbeE9hF1pgK68jLUIyfJoB3TBNHLbDfKj7RDPox4wscxHdWnyam/f09ts+o8wR2gWNQ+fwJeOlpgYMIDDL5+tLoCdbTicJlJyCa8+uSSBwV9NLT4qa97MLfJl+wGhCJNxqvGcFCMfnB5DOCSRGJtzqcJ8FCAfAfkXij05OpgDezYQXzf7HRGV7dtEPHiVsoonG5haB6fAS5N9Pt1HmdCBSKyQ8sx/jcp+G2Fu+z8WjzCsvJ15IBTyYDhQJWE//y05GFfOzL60WiBTezgafyvZ9KJFoRCuAbkQhm8L1Ll56Iz30KXhKIHp5OFD6REnqJd67lmCYuJeK+qypIJEoxUQCpTB6Hm0CRKEUogBQEYqSXN7NdfiKUoCfQbOJddlrgElMpfz++Az/GTRRAMJ3DUGuB/uQFF4Gj8MxmKL7KpeMzjGtZ4pkD8ETSOLT+M4MwUZDHtC+TjfEO7f6XnTrGYeJFvAehgMR+lWuy+4nikNHbUPS9/ASM0PYcF4fsTBTkMu3lpxl1CoQ4NLfrs576jbYmF1Z1/Bw7Ow3UnyYav6T16+FvmjNRRPOrePCTWKNAOCeG2v3psblumDE1i8Y3R6eCut8oV3mNMDWE8dHHjPeJhctP0EPIrx0Vh5B8HwU5TbmQnFtwP1n4Q0VCHML7cfl9+evT/6nPy2UXv9TlpHlvylc/1Tm3Xk3/dc/dk+eox3gabmaTl5fKvtT+ydyJSAhEOocuPblXAa1kmKQPbqPLS2kdvkchFoRg4ensRCRIy83sqFxSIRyRWNWhm9n38t3Y3rO9QcZ/J9h+LcP67Dg0D3m0afrAOeHxO40kN7NvJ83RBfzTk+7sz2MKWwvdUjfSg0biejCmF+f1p05PFKVE/Bz7QC8BPMuzsv1qLtx793uzWESZKAJF4mgYPnE2Ip9uY5JoVQlFKRG/a7e2QQdUKPabKhSljI9FgEj0iENUgSKS5NJTBL6qdRmfLHbTXoIaGImV43DvcT8MDEe1Vz2t8aGBAx7AUy5CjUw3fY06pwaeyyLx2vU6bP+YKOBeuNj0/j7tQS+BFYj9bvuq44RR9X0UpgqGG7HQh4vLUSKRSscJo/ob7sQCautxTolEWh32oXdmQwotYyES6TXel01CYaqAFmqfVye+lU4k4mm4T00Up3iw01uNWJz82lKRWE6zUKwxVRDSmYUsxcuRjy70Db7X+lMi0Vaj/dv05bFf5bLAO7a9EY9RHh93141/V8mZCItEWi49waMUU8Uzl9J0apjmZcCTaxDk5qFY4xKUZ0pMrMY305kmUjNRwDNpp4rKakwRIpFel1CYKiAhkcir8n43UcArK08V7kdwp1so1pgqYAI+LpwHXSeK+WPhxJjOSlNFjZvWNyIxXsVj4NJTdC4BjLdCLGo+zkRiOt1DMf9UAYnUnCJKEYlJmSiqc6KEUHsSm22qqB2IUkRiYkNCYaogpRli0SIQxFUp3sMmCrEgpcyxaBkI08TUfGd2Ez4okEAEgpOG3qMwVZBSlqmi9WUmkVjG8JvZYsEUIl3373EfQiSWMjwUbIi0+PCniFNFrxvVIrGcEKHoNVV8lcu/f7fnZFrOqLD3fCWTSORT4ZiFuZld+9vw3sXg8d/P/018dPFV+k0bPcMkEEsLMVHc1Himf3RicK9kQiOf4bf8s3u/F0Iklhdmorg5MlnUWuRvf47p4h/vFoiLuL50W8hrTRejoicSlIChKGV/LFpNAbUvg6Wzd3G4XsXinTPBGP1iBpHgHyFDUcrzZ/cuD3Xw6eIgFvs8LvqP4RgdhUciwZ2wobgZFYc6U0Wyd2hbHPqJFoZ7Hgc8CHUzO5qlJpgzi0PkhaXVghx5oT/qeo19LDnu5HEVCiwOwCahWJ1IUIrHAZuE4o2lLj+dsdJCM9tlp5WOHYcIBfObbWGvSSTYQShWZpH43EzRcfzZSSh2OHf5yckYQo0FfqZIsJ4TTwyEgjoyvOnuzEI/WyRME3xAKOCd2SIBHxIK1vLpJ6/OGAnTxLoOHnuhYE3vAtD7o7whsPCf9RTFlJ8oe7nUeXaZ4f7EMyuGwDTBASYKzskaCVjVgScLQhFZj6/UtNCvwzTBQULB8ViIDOT04ZMGoegiwTO5Txd9kYBlCAX/2bP4Xy4ikZHLTjz64DHhVU/8SQSAByaK6Hrc0AbWtHOqEAoANgkFzM79CbbseHwIBcDq3sRCKDJwnwIYSCi6Mf4DgW1MFUIBwCah2Gm6T45lDW5k84kXjxehyMJ9CqCHJ7EQCgA2CQUAf3qYKv7n2nsiLj8BvdzF4mcpn92o/SrHPjRu62cc/TPzuZayzO8KzOLH79/lr9EbcRM1GHWnrpO/44rf88wxXvFEDZdLrHsULoPt4PIT0NP1GisUpYgFQDThQlGKWLxlquAdl52oKGQoSpk5FrP+XsCswoYiirDBMlUAnQgFzMZlJyoLHYqwz+ajMFUAHYQOxbwEEMhDKLIzVXDPZScaEAoANgnFMBWf+ZkqKMU0QTNCMQuxABoRCgA2CcVQlS8VmCrW5bITDQnFbMQCqEwohvNMEIgtdCgifJFRhG34mKliLS470VjoUKyjwYkuFkAlYUOR8pk8wIROfWf242Je60P8IkaizwcUNvi9fcf2/Fx6orGfNRflrT9r70IbMRKp/SpiAZzys9cPEoA9rqXJVMG8TBN0EPYeRTSpQ+fGNnCCUHygTywaPUMUC+AgoQBgk1B8yFQBrEYoANgkFAeYKoCVCMVBqV8FxTwuHoe0JxQntI+FqQIYTygA2CQUJ5kqgNkJRQXuVzCU+xQ0JhSVtI2FqQIYRygqMlkAMxKKytrFwqeEssHlJxoSitW5/AS8IRQNmCoYwlRBI0LRiPsVDCEWNCAUDbWJRYOpwuWnuYgFlQlFYyYLhhALKhKKlNyrYAexoJKfozdgBV/lUn5Z3Bnhcinl6rF32ifRnXB//7j8vvw1eiNWUTcWDZ4tftX/IwliwsWri7NT2ST73aWntOZ4ANKJy1Cfq7HPLpcp9r1QdOTGNkNNsGB1U3tfJQ+GUHQmFgyVeLHqpuU+ShoMoYDVJFyouum1b5IFQygGqDdVVL5P4Y1360i0SE0tSTCEAlaVZJHqZuS+CH4shGIQ9yoII/ACtZygwRAKIOTi1FW03/8WjCDbJRTpeT8FlQRZlHgQIBhCMVDIy09uaK9NLOIaOGUIBfAnsYivczCEAvhupVhk/l07bbtQAM8FuDbODh2OkVAA28RieUIxWJ0b2t6hTWNiEVvj4yMUwD5iEVvD4yMUwH5iEVuj4yMUPOfyE6+IRWwNjo9QAJ8Ti9gqHx+hAI6Z4eWz2bd/S8XjIxTTaPCZTy4/scfMi+0MKhwfoQDOE4vYTk4XQsE2UwV7iUV8Bz9YUCiAejLFItO2tvBBNH522By6uZbS4qPLf5VSvur/sUzqtvBcfVdKGo+xeDh2QgG0cbnEjcXq08Q7D/vHpSf2ca+CIyzIUxAK9hMLjoj2fotI25KEUAz2q/r7H4KO+mCBTss9Cj7jxnYfe6a3jMdh9I1usTpEKPicWNR19JLes/8vy3EZcaNbJA77cfl9+Wv0Rqys/qWnmw4nRZZFKZpe93qyHJ8ewRCJU4RioHaRKKVLKErJsxiNNvKFAFmOUYtgCEQVLj1xjstQz0V6hdhtW6Ifp/tF/Ww0BKIqE8VAbSeKUrpNFaXEW4TOLNRHf5dIcdgS7Vjt9S4e4tCMUAzSPhKldA3FzahFKMsiHUnWYNCdS09Ta/TZT1t6XYoShvNcNmQnoRigzzQxUKtr4uJQn1iwg1BMb8BUcXO/sH+6GIlCP1ludjOMUHQ2/TTxioU/PtMFL/ispyUsGic+J+g8IRQdjZ0mxIKdxIIHQgF896sIBv8Sik5i3JuIsA2kIhYUoegiRiRuIm0LKYjF8oSisViRuIm4TYQmFksTioZiRuIm8rYRkvsWy0r7Popai/BXozejxY7EzcA345GX91ssJ82HAvZceM/EI0cgHokFB4jFMkKHIsKiuzcaEbb1HLHgIMGYXthQ5F94MxILDhKLqYW7RyEQI7lnEdvec2PAMfTBglMLNVGIRBRiEUON82GhL6+imRChEIioBKO/VueCYHDc8FCIRHRi0Uev80Aw+NzQN9yJRAaOUVvX0ncf9/55xZv0JjAsFCKRiWPVxuiPne/4872rO7Xul54EIjuXos6Ldg64HMW2rhOFSMzAMTwn4v4bdDnKhJFGt4lCJGZkutgvy+N/4DE1ZYTVZaIQiVk5rvtk2k8Dt9WUEVbziUIkVmG6+C77Y3/wMTVhhNEsFAKxKsHIH4h7QY6naAzVJBQiwdgF5t3jr9W2zfy4F4yVVQ2FQPBcloX56Hau8rgPEotSBKOzKqEQCPazGOcWKBY3otHcqVAIBKxKMFby8fdRiAMQ8rtL7l9aKxpVvQ2FMADP3daGYMEoRTQq+xYKYQA+E3C6uCcap/34/bsM/+IiYBaBg7FFQDYJBVBZ0liMFDxUQgHJfb1YmMdfRhaMUwLFQyggqVeBeGVcOASjioHhEApI5NM4PDMmGGLRRKd4CAUkUSMS9wRjUg3iIRQQXO1A3HM5akEHQiIUEFjLSNwzXbBFKCCoXpG4MV3wilBAQL0jcU8weCQUEMzISNx4Dwb3hAICiRCJe4JBKUIBYUSLxM34WNzE3D8rEAoIIGok7sUJRimi0ZdQwGAZInETKxaP8uzHbIQCBsoUiZvYsXgl336ORChgoIyhKCVrLPbKeUxaEgoYJGsk7s0djGfyH7MjhAIGmSEUpawYi0dzHMctQgEDzBKJG7G4meu43vwcvQEA87gP5jzR+N/oDQDym21CquNayiSTllAAVYjFK/mD4R4FDDLrwup+xTv5jruJAqCrfCE1UcBAporV5Tj+JgqAYXIE1UQBg5kq+Fvcx4GJAgazoPK3uI8DoYAAZozFrJNSWzEfBy49QSAzLq4zRrCPOI8FEwUEYlHlP3EeCyYKCGi2yUIAzxr7eBAKCGyWYAhFLWMeD0IBwYkFz9V4XDw7Jt//XKGABGaIhVDk5WY2JDDDIjtD7FYlFJDEDLEgJ6GARMSCEYQC6Mblp5yEApIxVdCbUEBCYkFPQgFJiQW9CAUAm4QCEjNV0INQQHJiQWtCAcAmoYAJZJkqsmwnfxIKADb9HL0BzGyGd+F6Bgw+ZpyTZojBETEDEvkjMlx2ystEwQfiLkL93e8LCyBzEwo2CMM+ovGOaSI3N7N5cLn7m8+N3W8WZFowUVBGL27zue1Pi3Yp4jUDoViWOLR3KWLBDFx6Wo7LSn2tva9NE3MQimUIxDj2O7kJxfQEIob1joFpYh7ecDet9RamHPosnqPfeCcSczFRTMcEEZtjQz5CMRWLEOOZJuYjFFMwReTiWJGLUKRn0clpzuNmmpiTUKQ252LDeSMWbJGYl1Ck5FLTHBxDcvARHulMsrh8NfgzfzX4M9nFNDE3oUglaSRaROHTnxM2Ivk/D0ok5icUaSSJRK8ofOpxu8KGA+LxzuwUgkciahz2Gh6Nds/IW79D2zSxBhNFaIEDkT0O9+5/lyHRyHn5SSTWIRRhBYzETHF45fY7Dp8yYhOJtXh5bEjBIvFV1ojEvdV+X9jgHkU4gSJhsfxbt+mizbP02vcpTBPrMVGEEiQSK04QW+wLFicUYQSIhEC8Zr+UUkwTqxKKEIJEgm32EYvyqqfhBkfC4hdI7JfJmibWZaIYSiTSSbjPLPCcJRTDDIyEexHn2HcsRiiGGBwJ+JCpZG1C0Z1ITMG+ZCFC0ZVIAPl41VM3gyIhEMBJJoouRGJK9i+LEIrmRIJPBHjz5QM3shGKpkSCGCz2nCEUzYjEEuxvFiAUTYgE8RyZKkwilCIUDYgEcX2y8IsEN764qBrvkVha9S83artIv/syI5HgnvdRVCES5HILwWMwBIJnTBSniQT/qDpVWLCJwz2KU0SCVuK9n4J1CcVhIgGsQSgOEQmeqH5sTBXEIBQfEwlgLW5m7+ZrS9kp2Utl4R0TxS4iwUguQTGWULwlEnzIMWMyQrFJJIjCVME4QvGSSHBCk+MnFozhZvZTIkEl1W9sl+Lm9r0956r9dZbPeopGJHjrUix+nzyZe/xvV993nzNRfON9ElTWZKooZc0Fr+b5ueL+O0Yo/iASNCIWJ7U8N1fZh8cJxR986RANNYtFKXMvdr3Oy5n34Tle9fQvkaCxpsd61ldE9fy9Zt2H55koSikiQVcmi51GLtwz7cfzhKKUMuQBKRJraxqLUnIvdFGe2Wfeh3W59CQSjND8MRBlsf1UpO2OtC1jCQWM0iUWmRa7iNsacZv6c+mp9wPBNMGj5pehbqJeSsmwGEfdd30sHgqRIIhusSglzqKXIRD3ouy3/oSiF5Hgna6xuOm9+GWLw6M1Y7FwKESCgIbE4l7NhTB7FF5ZLxZC0YNQ8KnhweC9dYKx6KueRILgPG4SmHVi+m7RUHTiZOeMr+IxFN4asRCKVpzg1OKxFNz8sVjwHkWng+rkpgX3LoKb876FiaIFkaAVl6OCm3O6EArISDACy/bRKe8tdumpw8Fz8j53PTiSX04cs6M/8+zPHcElqaDmuBQlFDWtFokzC3FW0QMiGEHlPlcWCoVp4rQVw/BO1HAIRlA5zyGhqGXmSAjEPhGjIRhB5TqnhKKWGUMhEMeJBrvFP88WCYVIfEQg6hINdot57glFDTOFQiTaiRiMUkQjvPHnpFCcJRJ8KmowShENnlogFKaJXUSiv8jBuCceyxOKs2YIhUiMkyUWr4jIEoTiDJGgluzBeKVWSHqca6L30uShME1sEol4Zg1GVuJRSinl5+gNAO5cr2IRyeOTwUXDYaI4yjRBa4IR20LREIqjModCJHIRjPgmj8bE30fh5GISwh7fV5n6O0ImnihME09ZdHIzXeQx0ZQhFEdkDYVIzEMwckkejUlf9eQkYnK36AtGDvdPLhNGY9KJwvsnvjFNzE0wckoSDaH4lEgQmWDkFTgaE77qyYnCwq5XTwyyCvyqqQknCped/mDRwJSRW4BJQyg+lSkUIsEj0chtUDQmC4VI/EEo2CIauXWMhlB8IlMoRIIjxCOvhuGYKBQdHuBZQiES1CQeOVUMx6RvuAOqeffEY3RIPnliNHpbe3r1xPZAQCaZKEwT/zJNQB0rRaWUzYCYKACeefWka9aAbDwZnmCi6HTQMkwUpgnob9Zw3Ek+UYgEMNjjE7QJw5H4IzzmOxjABCb8GJWkl546RyLDRDHZAxOmknzK+Llv0Y20CIkEkEzy7w/ZeY/i8ZcbFY6cOxmglJI2GAdvZt//kj2ikWunAmxKFowfv39fKt+jqBmOwTsxy2Un9ycgt+DBaPDy2Ge/8J6FLPaOAmjmeg0di07vo4i7A17KMk0Acwh8OSrx+ygAJhTwUrJQAEQTLBZC8YzLTsBogd7hLRQAkQWIhVA8yjZNBHgQAY0NPs+F4l62SADrGBgLoQDIYlAshOLGNAFkMOAmt1CUIhJAPh1jIRQAWXWaLoTCNAFk1zgWa4dCJIBZNJwu1g2FSAAzahCMNUMhEsDsKgajwRcXBTdTJLwrG/jEwY8w7/R9FEHMFAmATz0+udwZjnVCIRIAf9oZjjVCIRIA7z27nH25LHAzWyQAjrteJw+FSACcNuelJ4EAqGa+iUIkAKqaKxQiAVDdHJeeBAKgmdyhEAiA5nKGQiAAuvl5eNH9VXU73hMHgCGOTxTvFu4zIREFgDDaXXqy2ANMYa6XxwJQnVAAsEkoANgkFABsEgoANgkFAJuEAoBNQgHAJqEAYJNQALBJKADYJBQAbBKKzC6X0VsALEAoANgkFABsEgoANgkFAJuEAoBNQgHAJqEAYJNQALBJKLLzpjugMaEAYJNQALBJKADYJBQAbBIKADYJBQCbhAKATUIBwCahAGDTz+4/8dfDP3913wIAPnA+FI8Lf4v/X0wAhvnx+3L56+W/PRuBVoTju+t19BYAk/oZNgZbbtssGADN5b6Z/avEnXoAJpE7FDdiAdDMHKEoRSwAGpknFKWIBUADc4WiFLEAqGy+UJQiFgAVzRmKUsQCoJJ5Q1GKWABUMHcoShELgJPmDwUAp6wRihWmistl9BYAk1ojFKWsEQuABtYJBQCHrBUKUwXAx9YKRSlzx8J9CqCB9UIBwEfWDIWpAmC3NUNRytyxAKho3VDMzFQBVLR2KGaeKsQCqGTtUJQiFgBvCEUpYgGwQShWcLkIBnDYj9+/L3+N3ogwvkZvQCfX6+gtABIRikerxKIUwQB2EYpnVorFjWgAL/wcvQEE8XgPQziAf5goXllxqtgiHLAsodgiFvvsicioV10JHJwmFO+IxXzEAz4iFHuIxbxEA94Sir3EYm6CAS8JxSfEYn6CAd8IxafEYg2CAf/yWU/wjM/Ggn8Jxadm/qRZ/iQWUEoRimPEYh1iAUJxmFisQyxYnJvZZ7m5vY6JbnD/KOX/Rm/DTH6XMvU6aqI4y2QBTE4oahCLNbgExaKEohaxWINYsCChqEksgAkJRW1iMT9TBYsRCgA2CUULpgpgIkLRiljMzeUnFiIULYkFMAGhAGCTULRmqgCSE4oexGJO7lOwCKEAYJNQ9GKqAJISip7EAkhIKADYJBS9mSqAZIQCgE1CMYKpYh5eIssChAKATUIxiqkCSEIoANgkFCOZKoAEhAKATUIBwCahGM3lJyA4oQBg0/8DIyIqyJ1ZM80AAAAASUVORK5CYII="
}
}
],
"flattened_raster": "Error: not possible calculate flattened raster",
"tiledate": "2019-06-26T00:00:00.0000000+00:00",
"tilenames": [
[
"/home/aganalyticshls/AgAnalyticsMain/HLSserviceapp/server/downloads/result_raster_20190719_163615_1374.tif",
5
],
[
"/home/aganalyticshls/AgAnalyticsMain/HLSserviceapp/server/downloads/result_raster_20190719_163615_9237.tif",
4
]
]
}
]
Code samples
@ECHO OFF
curl -v -X POST "https://ag-analytics.azure-api.net/hls-service/"
-H "Content-Type: application/x-www-form-urlencoded"
--data-ascii "{body}"
using System;
using System.Net.Http.Headers;
using System.Text;
using System.Net.Http;
using System.Web;
namespace CSHttpClientSample
{
static class Program
{
static void Main()
{
MakeRequest();
Console.WriteLine("Hit ENTER to exit...");
Console.ReadLine();
}
static async void MakeRequest()
{
var client = new HttpClient();
var queryString = HttpUtility.ParseQueryString(string.Empty);
// Request headers
var uri = "https://ag-analytics.azure-api.net/hls-service/?" + queryString;
HttpResponseMessage response;
// Request body
byte[] byteData = Encoding.UTF8.GetBytes("{body}");
using (var content = new ByteArrayContent(byteData))
{
content.Headers.ContentType = new MediaTypeHeaderValue("< your content type, i.e. application/json >");
response = await client.PostAsync(uri, content);
}
}
}
}
// // This sample uses the Apache HTTP client from HTTP Components (http://hc.apache.org/httpcomponents-client-ga/)
import java.net.URI;
import org.apache.http.HttpEntity;
import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.client.utils.URIBuilder;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.util.EntityUtils;
public class JavaSample
{
public static void main(String[] args)
{
HttpClient httpclient = HttpClients.createDefault();
try
{
URIBuilder builder = new URIBuilder("https://ag-analytics.azure-api.net/hls-service/");
URI uri = builder.build();
HttpPost request = new HttpPost(uri);
request.setHeader("Content-Type", "application/x-www-form-urlencoded");
// Request body
StringEntity reqEntity = new StringEntity("{body}");
request.setEntity(reqEntity);
HttpResponse response = httpclient.execute(request);
HttpEntity entity = response.getEntity();
if (entity != null)
{
System.out.println(EntityUtils.toString(entity));
}
}
catch (Exception e)
{
System.out.println(e.getMessage());
}
}
}
<!DOCTYPE html>
<html>
<head>
<title>JSSample</title>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.9.0/jquery.min.js"></script>
</head>
<body>
<script type="text/javascript">
$(function() {
var params = {
// Request parameters
};
$.ajax({
url: "https://ag-analytics.azure-api.net/hls-service/?" + $.param(params),
beforeSend: function(xhrObj){
// Request headers
xhrObj.setRequestHeader("Content-Type","application/x-www-form-urlencoded");
},
type: "POST",
// Request body
data: "{body}",
})
.done(function(data) {
alert("success");
})
.fail(function() {
alert("error");
});
});
</script>
</body>
</html>
#import <Foundation/Foundation.h>
int main(int argc, const char * argv[])
{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSString* path = @"https://ag-analytics.azure-api.net/hls-service/";
NSArray* array = @[
// Request parameters
@"entities=true",
];
NSString* string = [array componentsJoinedByString:@"&"];
path = [path stringByAppendingFormat:@"?%@", string];
NSLog(@"%@", path);
NSMutableURLRequest* _request = [NSMutableURLRequest requestWithURL:[NSURL URLWithString:path]];
[_request setHTTPMethod:@"POST"];
// Request headers
[_request setValue:@"application/x-www-form-urlencoded" forHTTPHeaderField:@"Content-Type"];
// Request body
[_request setHTTPBody:[@"{body}" dataUsingEncoding:NSUTF8StringEncoding]];
NSURLResponse *response = nil;
NSError *error = nil;
NSData* _connectionData = [NSURLConnection sendSynchronousRequest:_request returningResponse:&response error:&error];
if (nil != error)
{
NSLog(@"Error: %@", error);
}
else
{
NSError* error = nil;
NSMutableDictionary* json = nil;
NSString* dataString = [[NSString alloc] initWithData:_connectionData encoding:NSUTF8StringEncoding];
NSLog(@"%@", dataString);
if (nil != _connectionData)
{
json = [NSJSONSerialization JSONObjectWithData:_connectionData options:NSJSONReadingMutableContainers error:&error];
}
if (error || !json)
{
NSLog(@"Could not parse loaded json with error:%@", error);
}
NSLog(@"%@", json);
_connectionData = nil;
}
[pool drain];
return 0;
}
<?php
// This sample uses the Apache HTTP client from HTTP Components (http://hc.apache.org/httpcomponents-client-ga/)
require_once 'HTTP/Request2.php';
$request = new Http_Request2('https://ag-analytics.azure-api.net/hls-service/');
$url = $request->getUrl();
$headers = array(
// Request headers
'Content-Type' => 'application/x-www-form-urlencoded',
);
$request->setHeader($headers);
$parameters = array(
// Request parameters
);
$url->setQueryVariables($parameters);
$request->setMethod(HTTP_Request2::METHOD_POST);
// Request body
$request->setBody("{body}");
try
{
$response = $request->send();
echo $response->getBody();
}
catch (HttpException $ex)
{
echo $ex;
}
?>
########### Python 2.7 #############
import httplib, urllib, base64
headers = {
# Request headers
'Content-Type': 'application/x-www-form-urlencoded',
}
params = urllib.urlencode({
})
try:
conn = httplib.HTTPSConnection('ag-analytics.azure-api.net')
conn.request("POST", "/hls-service/?%s" % params, "{body}", headers)
response = conn.getresponse()
data = response.read()
print(data)
conn.close()
except Exception as e:
print("[Errno {0}] {1}".format(e.errno, e.strerror))
####################################
########### Python 3.2 #############
import http.client, urllib.request, urllib.parse, urllib.error, base64
headers = {
# Request headers
'Content-Type': 'application/x-www-form-urlencoded',
}
params = urllib.parse.urlencode({
})
try:
conn = http.client.HTTPSConnection('ag-analytics.azure-api.net')
conn.request("POST", "/hls-service/?%s" % params, "{body}", headers)
response = conn.getresponse()
data = response.read()
print(data)
conn.close()
except Exception as e:
print("[Errno {0}] {1}".format(e.errno, e.strerror))
####################################
require 'net/http'
uri = URI('https://ag-analytics.azure-api.net/hls-service/')
request = Net::HTTP::Post.new(uri.request_uri)
# Request headers
request['Content-Type'] = 'application/x-www-form-urlencoded'
# Request body
request.body = "{body}"
response = Net::HTTP.start(uri.host, uri.port, :use_ssl => uri.scheme == 'https') do |http|
http.request(request)
end
puts response.body